
Solution

Problem 1

1. Idempotence: Show that P 2 = P .

Solution:

To show P 2 = P , expand P 2:

P 2 =
(
!(!T!)→1!T

)2
.

Using the associative property of matrix multiplication, we rewrite:

P 2 = !(!T!)→1!T!(!T!)→1!T .

Since !T!(!T!)→1 = In (the identity matrix), this simplifies to:

P 2 = !(!T!)→1!T = P.

Thus, P is idempotent.

2. Symmetry: Show that PT = P .

Solution:

The transpose of P is:

PT =
(
!(!T!)→1!T

)T
.

Using the property (AB)T = BTAT , we have:

PT = (!T )T
(
(!T!)→1

)T
!T .

Since !T! is symmetric ((!T!)T = !T!), (!T!)→1 is also symmetric. Additionally, (!T )T = !.
Thus:

PT = !(!T!)→1!T = P.

Therefore, P is symmetric.

3. Projection Properties: Verify !T (v → Pv) = 0.

Solution:

Compute v → Pv:
v → Pv = v → !(!T!)→1!T v.

Multiply by !T to check orthogonality:

!T (v → Pv) = !T v → !T!(!T!)→1!T v.

Using !T!(!T!)→1 = In, this simplifies to:

!T (v → Pv) = !T v → !T v = 0.

Thus, v → Pv is orthogonal to the columns of !.
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Problem 2

1. Solution:

(a) From the definition of E[X|Y ], we can express the expectation of X as:

E[E[X|Y ]] = E

[∫ ↑

→↑
xfX|Y (x|y) dx

]

=

∫ ↑

→↑

∫ ↑

→↑
xfX|Y (x|y)fY (y) dxdy

=

∫ ↑

→↑

∫ ↑

→↑
xfX,Y (x, y) dxdy

=

∫ ↑

→↑

∫ ↑

→↑
xfX,Y (x, y) dxdy

=

∫ ↑

→↑
xfX(x) dx

= E[X]

(b) If X and Y are independent, then the joint density function fX,Y (x, y) is given by:

fX,Y (x, y) = fX(x)fY (y),

and the conditional density function becomes:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
= fX(x).

Using this, the conditional expectation simplifies as follows:

E[X|Y = y] =

∫ ↑

→↑
xfX|Y (x|y) dx =

∫ ↑

→↑
xfX(x) dx = E[X].

Since E[X|Y ] does not depend on Y , we conclude that:

E[X|Y ] = E[X].

(c)

E[E[X|Y, Z]|Y ] =

∫ ↑

→↑
E[X|Y = y, Z = z]fZ|Y (z|y) dz

=

∫ ↑

→↑

(∫ ↑

→↑
x · fX|Y,Z(x|y, z) dx

)
fZ|Y (z|y) dz

=

∫ ↑

→↑

∫ ↑

→↑
x · fX|Y,Z(x|y, z)fZ|Y (z|y) dx dz

=

∫ ↑

→↑
x ·

∫↑
→↑ fX,Y,Z(x, y, z) dz

fY (y)
dx

=

∫ ↑

→↑
x · fX,Y (x, y)

fY (y)
dx

=

∫ ↑

→↑
x · fX|Y (x|y) dx

= E[X|Y = y].
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2. The Kullback-Leibler (KL) Divergence DKL(P↑Q) between two distributions P (x) and Q(x) is defined
as:

DKL(P↑Q) =

∫ ↑

→↑
P (x) log

P (x)

Q(x)
dx.

What’s the KL Divergence between two Gaussian distribution N (µ1,”1) and N (µ2,”2)?

Solution for Univariate Gaussian:

For the two Gaussian distributions:

P (x) = N (µ1,ω
2
1),

Q(x) = N (µ2,ω
2
2),

their probability density functions are:

P (x) =
1√
2εω2

1

exp

(
→ (x→ µ1)2

2ω2
1

)
,

Q(x) =
1√
2εω2

2

exp

(
→ (x→ µ2)2

2ω2
2

)
.

Substituting P (x) and Q(x) into the KL divergence definition:

DKL(P↑Q) =

∫ ↑

→↑
P (x)



log
1↓
2ωε2

1

exp
(
→ (x→µ1)

2

2ε2
1

)

1↓
2ωε2

2

exp
(
→ (x→µ2)2

2ε2
2

)



 dx.

Simplify the logarithm term:

log
P (x)

Q(x)
= log

√
2εω2

2√
2εω2

1

→ (x→ µ1)2

2ω2
1

+
(x→ µ2)2

2ω2
2

.

Separate the integral into three parts:

DKL(P↑Q) =

∫ ↑

→↑
P (x) log

ω2

ω1
dx

  
(A)

+

∫ ↑

→↑
P (x)

(
(x→ µ2)2

2ω2
2

→ (x→ µ1)2

2ω2
1

)
dx

  
(B)

.

For (A), we know:

∫ ↑

→↑
P (x) log

ω2

ω1
dx = log

ω2

ω1
,

since log ε2
ε1

is independent of x and integrates to 1 over P (x).

For (B), by the definition of variance, we know:

Ex↓P (x)[(x→ µ1)
2] = ω2

1 .

Substitute and simplify:

∫ ↑

→↑
P (x)

(x→ µ1)2

2ω2
1

dx =
ω2
1

2ω2
1

=
1

2
.
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For the cross-term:
∫ ↑

→↑
P (x)(x→ µ2)

2dx = E[(x→ µ2)
2]

= E[(x→ E[x] + E[x]→ µ2)
2]

= E[(x→ E[x])2] + 2E[(x→ E[x])(E[x]→ µ2)] + E[(E[x]→ µ2)
2]

= Var(x) + (E[x]→ µ2)
2

= ω2
1 + (µ1 → µ2)

2,

where the third equality follows from E[x→ E[x]] = 0.

Combine all terms:

DKL(P↑Q) = log
ω2

ω1
+

ω2
1 + (µ1 → µ2)2

2ω2
2

→ 1

2
.

Solution for Multivariate Gaussian: Suppose the covariance matrix ” ↔ Rd↔d.Following the
definition of Multivariate Gaussian, we have:

ln
P (x)

Q(x)
= ln

(
det(”2)

det(”1)

)
→ 1

2
(x→ µ1)

↗”→1
1 (x→ µ1) +

1

2
(x→ µ2)

↗”→1
2 (x→ µ2).

Thus,

DKL(P↑Q) =

∫
P (x)

[
1

2
ln
(det(”2)

det(”1)

)
→ 1

2
(x→ µ1)

↗”→1
1 (x→ µ1) +

1

2
(x→ µ2)

↗”→1
2 (x→ µ2)

]
dx

=
1

2
ln
(det(”2)

det(”1)

)
→
∫

P (x)
1

2
(x→ µ1)

↗”→1
1 (x→ µ1)dx

  
(A)

+

∫
P (x)

1

2
(x→ µ2)

↗”→1
2 (x→ µ2)dx

  
B

.

For (A), note that

E[(x→ µ1)(x→ µ1)
↗] = ”1.

Moreover, we know that

E[tr(A)] = tr(E[A]).

(Please refer to https://statproofbook.github.io/P/mean-tr.html for more detail.)

Therefore,

(A) =
1

2
E[tr(x→ µ1)

↗”→1
1 (x→ µ1)]

=
1

2
E[”→1

1 tr(x→ µ1)
↗(x→ µ1)]

=
1

2
tr(E[”→1

1 (x→ µ1)
↗(x→ µ1)])

=
1

2
tr(E[”→1

1 ”1])

=
1

2
tr(1d) =

d

2
.
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For (B), note that

E[(x→ µ2)(x→ µ2)
↗] = E[(x→ µ1 + µ1 → µ2)(x→ µ1 + µ1 → µ2)

↗]

= E[(x→ µ1)(x→ µ1)
↗] + (µ1 → µ2)(µ1 → µ2)

↗

= ”1 + (µ1 → µ2)(µ1 → µ2)
↗.

Thus,

(B) =
1

2
tr(E[”→1

2 (x→ µ2)
↗(x→ µ2)])

=
1

2
tr([”→1

2 (”1 + (µ1 → µ2)(µ1 → µ2)
↗)])

=
1

2
tr(”→1

2 ”1) +
1

2
(µ1 → µ2)

↗”→1
2 (µ1 → µ2).

Putting these pieces together, we get

DKL(P↑Q) =
1

2
ln
(det(”2)

det(”1)

)
→ 1

2
d+

1

2
tr
(
”→1

2 ”1

)
+

1

2
(µ1 → µ2)

↗”→1
2 (µ1 → µ2)

=
1

2


tr
(
”→1

2 ”1

)
+ (µ2 → µ1)

↗”→1
2 (µ2 → µ1)→ d+ ln

(det(”2)

det(”1)

)
.
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Problem 3 We are tasked with minimizing the function:

F (x, y) = y + (y → x)2.

1. Compute the Gradient ↗F (x, y):

The gradient ↗F (x, y) =

[ϑF
ϑx
ϑF
ϑy

]
is calculated as follows:

1. Partial derivative with respect to x:

ϑF

ϑx
=

ϑ

ϑx

(
y + (y → x)2

)
=

ϑ

ϑx
(y) +

ϑ

ϑx

(
(y → x)2

)
.

Since y is independent of x, its derivative is 0, and:

ϑ

ϑx

(
(y → x)2

)
= 2(y → x)(→1) = →2(y → x).

Thus:
ϑF

ϑx
= →2(y → x).

2. Partial derivative with respect to y:

ϑF

ϑy
=

ϑ

ϑy

(
y + (y → x)2

)
=

ϑ

ϑy
(y) +

ϑ

ϑy

(
(y → x)2

)
.

The derivative of y is 1, and:

ϑ

ϑy

(
(y → x)2

)
= 2(y → x)(1) = 2(y → x).

Thus:
ϑF

ϑy
= 1 + 2(y → x).

The gradient is:

↗F (x, y) =

[
→2(y → x)
1 + 2(y → x)

]
.

2. Evaluate ↗F (x, y) at (x0, y0) = (1, 1):

Substituting x = 1 and y = 1:

↗F (1, 1) =

[
→2(1→ 1)
1 + 2(1→ 1)

]
=

[
0
1

]
.

3. Perform the Gradient Descent Update:

The gradient descent update rule is:

(xk+1, yk+1) = (xk, yk)→ s↗F (xk, yk).

Substituting s = 1
2 , (x0, y0) = (1, 1), and ↗F (1, 1) =

[
0
1

]
:

(x1, y1) =

[
1
1

]
→ 1

2

[
0
1

]
.
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Simplify:

(x1, y1) =

[
1

1→ 1
2

]
=

[
1
1
2

]
.

4. Final Answer:

After one step of gradient descent, the updated point is:

(x1, y1) = (1,
1

2
).
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