
Solutions

Problem 1

1. For the samples (xi, yi), where xi represents the population of the ith city and yi represents the
corresponding profit of a food truck in that city, write the closed-form solution for the linear regression
problem that predicts profit based on population. Then, calculate this solution in Python using the
data provided in hw2data1.txt and visualize the result.

We consider a simple linear model:
hω(x) = ω0 + ω1x.

Our dataset has m examples {(x(i), y(i))}mi=1. We set up:

X =





1 x(1)

1 x(2)

...
...

1 x(m)





→

, ω =

[
ω0
ω1

]
, y =





y(1)

y(2)

...
y(m)





→

.

The cost function to minimize is the sum of squared errors:

J(ω) =
1

2m

m∑

i=1

(hω(x
(i))→ y(i))2.

The closed-form solution for ω is given by the Normal Equation:

ω =
(
XX→)↑1

Xy.

2. Implement Stochastic Gradient Descent (SGD) to optimize the linear regression parameters and visu-
alize the result.

Our model and cost function remain:

hω(x) = ω0 + ω1x, J(ω) =
1

2m

m∑

i=1

(
hω(x

(i))→ y(i)
)2

.

In Stochastic Gradient Descent (SGD), we process each training example (or a small batch) one
at a time. The parameter update for a single example (x(i), y(i)) is:

ωj := ωj → ε
(
hω(x

(i))→ y(i)
)
x(i)
j ,

with x(i)
0 = 1.

3. Implement Stochastic Gradient Descent to optimize the corresponding regularized polynomial regres-
sion problem and visualize the result.

In polynomial regression, we introduce higher-order terms of the original feature x. For instance,
if we want a cubic polynomial, our hypothesis looks like:

hω(x) = ω0 + ω1x+ ω2x
2 + ω3x

3 + ω4x
4.
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More generally, for a polynomial of degree d, we define:

Xpoly =





1 x(1) (x(1))2 · · · (x(1))d

1 x(2) (x(2))2 · · · (x(2))d

...
...

...
...

1 x(m) (x(m))2 · · · (x(m))d




.

To prevent overfitting in polynomial regression, we often apply regularization. As an example, we
take an L2 regularizer on all higher-order terms:

J(ω) =
1

2m

m∑

i=1

(
hω(x

(i))→ y(i)
)2

+
ϑ

2m

d∑

j=1

ω2j .
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Problem 2

1. The logit function is defined as:

logit(p) = ln

(
p

1→ p
,

)

where p ↑ (0, 1). The sigmoid function (logistic function) is given by:

ϖ(x) =
1

1 + e↑x
,

where x ↑ R.
Prove that the sigmoid function and the logit function are inverse functions of each other, i.e.,

ϖ(logit(p)) = p, and logit(ϖ(x)) = x.

Proof. 1. Prove ϖ(logit(p)) = p:

ϖ(logit(p)) =
1

1 + e↑logit(p)
(1)

=
1

1 + e↑ ln( p
1→p )

(2)

=
1

1 + 1↑p
p

(3)

=
1

1 + 1↑p
p

(4)

=
1

p+(1↑p)
p

(5)

= p. (6)

2. Prove logit(ϖ(x)) = x:

logit(ϖ(x)) = ln

(
ϖ(x)

1→ ϖ(x)

)
(7)

= ln


1

1+e→x

1→ 1
1+e→x


(8)

= ln


1

1+e→x

e→x

1+e→x


(9)

= ln

(
1

e↑x

)
(10)

= x (11)
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2. In probit regression, we assume a binary outcome Y ↑ {0, 1} with the probability model:

P (Y = 1 | X) = !(Xϱ) (12)

where !(·) is the cumulative distribution function (CDF) of the standard normal distribution, X ↑ Rd

is a vector of covariates, and ϱ is the coe”cients of the probit regression.

Now, given a dataset {(xi, yi)}ni=1, please: 1) write the log-likelihood function in MLE, 2) compute the
gradient of the log-likelihood function.

Solution: Given a dataset {(xi, yi)}ni=1, the likelihood function is:

L(ϱ) =
n

i=1

P (Yi = yi | Xi)

=
n

i=1

!(Xiϱ)
yi(1→ !(Xiϱ))

1↑yi

Then, we have

ς(ϱ) =
n∑

i=1

yi ln!(Xiϱ) + (1→ yi) ln(1→ !(Xiϱ)),

The derivative of the normal CDF is the standard normal PDF:

d

dx
!(x) = φ(x) =

1↓
2↼

e↑x2/2.

Thus, di#erentiating the log-likelihood function:

↽ς(ϱ)

↽ϱ
=

n∑

i=1

[
yi

!(Xiϱ)
→ 1→ yi

1→ !(Xiϱ)

]
φ(Xiϱ)X

→
i .

Then, we can use numerical methods to solve the MLE.
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