CS 4641 Background Test

Bo Dai

January 6, 2025

1 Probability and Statistics **1**

1.1 What are the median and mean of a set $\{15, 8, 3, 7, 12\}$, respectively?

A. 9,15 B. 15,9 C. 8,9 D. 9,8

- **1.2** Assume X is a random variable with the variance of Var[X]. What would be the variance of aX + b + c where a, b, c are scalar constants?
- **1.3** Let X_1, X_2, \ldots, X_n be a set of samples drawn independently and identically from a distribution P(X) over a one dimensional random variable $X \in \mathbb{R}$. What is the formula to estimate the variance?
- 1.4 Suppose that given random variable X, random variables Y and Z are conditionally independent. Which one of the following is true?

A. P(Y|X,Z) = P(Y|Z) B. P(Y|X) = P(Z|X) C. P(Y|Z,X) = P(Y|X)

1.5 Assume that the cumulative distribution function (C.D.F.) of a random variable is given as follows. Write down the expression for the probability density function (p.d.f.) of X.

$$F(x) = \begin{cases} 0 & if & x < 0\\ x & if & 0 \le x < 1\\ 1 & if & x \ge 1 \end{cases}$$

- 1.6 One box has several different colored balls inside of it. It has 1 red, 2 green, 4 blue, and 8 yellow balls. All the balls are the same size and shape. If you take out a ball from the box without looking, what is the probability that it will NOT be a yellow ball.
 - A. $\frac{8}{15}$ B. $\frac{7}{8}$ C. $\frac{7}{15}$ D. $\frac{6}{15}$
- 1.7 Which of the following statements is true? (Notation $A \cup B$ means "either event A or B happens"; notation $A \cap B$ means "both event A and B happened simultaneously").
- A. If the events A and B are independent, then $P(A \cup B) = P(A) + P(B)$
- B. $P(A \cup B) < P(A) + P(B)$
- C. If A and B are mutually exclusive, then $P(A \cap B) = P(A)P(B)$
- D. None of the above.

- 1.8 Suppose we throw two dice (each with 6 sides) simultaneously. Assuming the two dices are independent and each side comes up with equal probability. What is the probability of getting sum as 8 of the two numbers shown?
- 1.9 Suppose that f(x) is the probability density function (p.d.f.) of random variable X. Then, is $f(x|b < x \le a) = \frac{f(x)}{F(a) - F(b)}$ for any $b < x \le a$ True or False?
- 1.10 Assume that we have m coins. We toss each one of them n times. The probability of heads showing up for each coin is p. What's the probability of getting n heads for some coin? Your answer should be in terms of m, n and p.

2 Probability and Statistics 2

- 2.1 Suppose that there are two events A and B, and furthermore one event is included in another event: $A \subseteq B$ such that P(A) > 0 and P(B) > 0. How many of the following statements are true: (1) P(B|A) = 1, (2) P(A|B) = P(A)/P(B)?
 - A. 0 B. 1 C. 2
- 2.2 Let Y_1, Y_2, \ldots, Y_n be a set of random sample of size n drawn independently and identically from a normal distribution with mean μ and variance σ^2 . Then let $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. How many of the following statements are true: (1) \overline{Y} is normally distributed, (2) mean $\mu_{\overline{Y}} = \mu/n$, and (3) variance $\sigma_{\overline{Y}}^2 = \sigma^2/n$.
 - A. 0 B. 1 C. 2 D. 3
- 2.3 Is the following statement TRUE or FALSE: If we perform the same experiment a large number of times and the results are independent and identically distributed, then the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.
- 2.4 Suppose random variables Y, x and ϵ are related by $Y = \beta_0 + \beta_1 x + \epsilon$, with β_0 and β_1 are parameters and ϵ is assumed to independent of x and follow normal distribution with mean 0 and constant variance. Please calculate: (1) $E(\epsilon|x)$, and (2) E(Y|x).
- 2.5 Is the following statement TRUE or FALSE: $p(X = x|Y = y) = \frac{p(X=x)p(Y=y|X=x)}{\sum'_{x} p(X=x')p(Y=y|X=x')}$
- 2.6 The population correlation coefficient $\rho_{X,Y}$ between two random variables X and Y with expected values μ_X and μ_Y and standard deviations σ_X and σ_Y is defined as: $\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$. How many of the following statements are true: (1) X, Y independent $\Rightarrow \rho_{X,Y} = 0$ (2) $\operatorname{corr}(X,Y) \neq \operatorname{corr}(Y,X)$ A. 0 B. 1 C. 2
- 2.7 Is the following statement TRUE or FALSE: If X and Y are *any* two random variables and a and b are *any* two constants, then $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$?
- 2.8 Suppose Y_1 and Y_2 are any two random variables, the conditional expectation of $g(Y_1)$, given that $Y_2 = y_2$, is defined to be: (1) $E(g(Y_1)|Y_2 = y_2) = \int_{-\infty}^{+\infty} g(y_1)f(y_1|y_2) dy_1$, or (2) $E(g(Y_1)|Y_2 = y_2) = \int_{-\infty}^{+\infty} g(y_1)f(y_1|y_2) dy_2$ A. (1) B. (2)
- 2.9 Suppose F(y) is a cumulative distribution function over real domain, then how many of the following statements are TRUE: (1) $F(-\infty) = 0$, (2) $F(+\infty) = 0$, and (3) If y_1 and y_2 are any values such that $y_1 < y_2$, then $F(y_1) \le F(y_2)$?
 - A. 0 B. 1 C. 2 D. 3

2.10 Suppose $X \sim Normal(5, 3^2)$. What is $P(X \le 8)$ in terms of the standard normal variable Z? (Or $P(X \le 8)$ is equal to?)

A. $P(Z \le 1)$ B. $P(Z \le -1)$ C. $P(Z \le 0.6)$

3 Linear Algebra

- 3.1 We have two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times d}$. Let A_{ij} be the entry of A in the *i*-th row and *j*-th column, and similar notation applies for B_{ij} . Let the multiplication of A and B be C = AB, what is the dimensions of matrix C and how do you compute entry C_{ij} ?
- **3.2** If we have a + 2b 3c = 0, where $a, b, c \in \mathbb{R}^n$ are vectors, then these vectors are linearly independent. True or False?
- **3.3** The solution for the linear system Ax = b, where $A \in \mathbb{R}^{m \times n}$ and $m \neq n, x \in \mathbb{R}^n$, and $b \in \mathbb{R}^m$ is $x = A^{-1}b$. True or False?
- **3.4** If x is in the null space of A, then

A. Ax = 0 B. Ax = x C. $x^T A = 0$ D. $x^T A = x^T$

3.5 If Q is an orthonormal matrix, which of the following statements are correct? Choose all that apply

A. QQ = I B. $QQ^T = I$ C. $Q^TQ = I$ D. $Q = Q^{-1}$ E. $Q^T = Q^{-1}$

3.6 The squared Frobenius norm $||X||_F^2$ can also be expressed as

A. $\operatorname{tr}(X^T X)$ B. $\operatorname{det}(X^2)$ C. $XX^{-1}X$

3.7 What is the rank and trace of the matrix A

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 1 & 3 & -1\\ 0 & 6 & -2 \end{array}\right)$$

- 3.8 Which vectors are in the column space of the matrix A in Question 3.7? Choose all that apply.
 - A. $[1,2,0]^T$ B. $[1,0,-2]^T$ C. $[0,0,0]^T$ D. $[1,3,4]^T$ E. $[0,2,0]^T$
- 3.9 Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, and it has n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ and the corresponding n orthonormal eigenvectors $v_1, v_2, \ldots, v_n \in \mathbb{R}$, which one of the following is true? (choose one)

A.
$$Av_1 = \lambda_1 v_1$$
 B. $A = \sum_{i=1}^n \lambda_i v_i v_i^\top$ C. Both A and B . D. None of the above.

3.10 Let $f(x) = a^{\top}x$, and $g(x) = (a^{\top}x)^2$ where $x \in \mathbb{R}^n$ and $a \in \mathbb{R}^n$. Write the derivatives of f(x) and g(x) with respect to x in matrix and vector format, i.e., $\nabla f(x)$ and $\nabla g(x)$.

4 Numpy: Answer with numpy commands.

Assume that the following import statement is available (from numpy import * from math import *)

- 4.1 Create a 1D array of all the even numbers between 31 and 75.
- 4.2 Let $x = \operatorname{array}([2, 5, 1, 6])$. Compute the square root of each element, and assign the result to a.
- 4.3 Let $x = \operatorname{array}([3, 2, 6, 8]), y = \operatorname{array}([4, 1, 3, 5])$. Answer in Numpy commands. Raise each element of x to the power specified by the corresponding element in y.
- 4.4 Given the array $A = \operatorname{array}([[2, 4, 1], [6, 7, 2], [3, 5, 9]])$, assign the first row of A to a numpy array called a.
- 4.5 Given x = array([3, 15, 9, 12, -1, 0, -12, 9, 6, 1]), set the values of x that are positive to zero.
- 4.6 Given the following code, calculate the result of w:

```
if z < 5:
    w = 2 * z
elif z < 10:
    w = 9 - z
elif z < 100:
    w = sqrt(z)
else:
    w = z
 1. z = 1, w = ?
    A. 2
    B. 8
    C. sqrt(1)
    D. 200
  2. z = 9, w = ?
    A. 18
    B. 0
    C. sqrt(9)
    D. 200
 3. z = 60, w = ?
    A. 120
    B. -51
    C. sqrt(60)
    D. 200
 4. z = 200, w = ?
    A. 400
    B. -191
    C. sqrt(200)
    D. 200
```

4.7 Given $A = \operatorname{array}([[1, 2, 3], [4, 5, 6]]), b = 7 \text{ and } C = A.T * b$, what is the result of C?

- 4.8 Given $A = \operatorname{array}([[1, 2, 3], [4, 5, 6]]), B = \operatorname{array}([[9, 8, 7], [6, 5, 4]])$ and C = A * B, what is the result of C?
- 4.9 Given $A = \operatorname{array}([3, 6, 2, 5, 9])$ and $B = \operatorname{array}([9, 5, 3, 7, 1])$, what is the resulting array returned by command $A \le B$?
- 4.10 Given the array $x = \operatorname{array}([1, 8, 3, 9, 0, 1])$, add up the values of the elements of x, and assign the result to a.