Lecture Notes 1
Brief Review of Basic Probability
(Casella and Berger Chapters 1-4)

1 Probability Review

Chapters 1-4 are a review. I will assume you have read and understood Chapters

1-4. Let us recall some of the key ideas.

1.1 Random Variables
A random variable is a map X from a set Q (equipped with a probability P) to R. We write
PXe€A)=P{we: X(w) € A})

and we write X ~ P to mean that X has distribution P. The cumulative distribution
function (cdf) of X is
Fx(z) = F(z) = P(X < x).

If X is discrete, its probability mass function (pmf) is

If X is continuous, then its probability density function function (pdf) satisfies

P(XEA):/

A

pr(o)ds = [ pla)da
A
and px(z) = p(z) = F'(x). The following are all equivalent:

X~P X~F X~p

Suppose that X ~ P and Y ~ (). We say that X and Y have the same distribution
if P(X € A) =Q(Y € A) for all A. In that case we say that X and Y are equal in

distribution and we write X 4 Y.




It can be shown that X < Y if and only if Fix(t) = Fy(t) for all ¢t.

1.2 Expected Values

The mean or expected value of g(X) is

ffooo g(z)p(x)dz if X is continuous

E (9(X)) Z/g(ﬂf)dF(ﬂf) = /9@)0”3(”) ~ 3 o(e)pz;)  if X is discrete.

Recall that:

L E(Y ¢0,(X) = X, (g, (X)),

2. If Xy,...,X, are independent then
E (HX) =[[Ex).
i=1 i
3. We often write u = E(X).
4. 0 =Var(X) =E ((X — p)?) is the Variance.
5. Var (X) = E (X?) — 2.

6. If Xy,...,X, are independent then

Var (i ain-) = Z a?Var (X;).

i=1 %

7. The covariance is
Cov(X,Y) = E((X — )Y — 1)) = E(XY) — pxpiy

and the correlation is p(X,Y) = Cov(X,Y)/0,0,. Recall that —1 < p(X,Y) < 1.



The conditional expectation of Y given X is the random variable E(Y|X) whose

value, when X = x is

EY|X =z) = /y p(y|z)dy

where p(y|z) = p(x,y)/p(z).

The Law of Total Expectation or Law of Iterated Ezxpectation:
E(Y)=E[EY|X)] = /E(Y|X = 2)px(x)dz.
The Law of Total Variance is
Var(Y) = Var[E(Y|X)] + E[Var(Y|X)].
The moment generating function (mgf) is

Mx(t) =E (e¥).

If Mx(t) = My (t) for all ¢ in an interval around 0 then X Ly.

Check that M (t)]i—o = E (X™) .

1.3 Exponential Families

A family of distributions {p(x;0) : 0 € O} is called an exponential family if

p(x;0) = h(z)e(f) exp {Z wi(Q)ti(x)} :

Example 1 X ~ Poisson(\) is exponential family since

e M\ 1
p(z)=P(X =12) = = e exp{log A - z}.

Example 2 X ~ U (0,6) is not an exponential family. The density is

1
px(z) = gl (z)
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where Ix(x) =1 if v € A and 0 otherwise.

We can rewrite an exponential family in terms of a natural parameterization. For k =1 we

have

p(x;n) = h(z) exp{nt(x) — A(n)}
where

Aln) =10g [ hia)exp{nt(a))do.
For example a Poisson can be written as

p(x;n) = exp{nz — e"}/a!

where the natural parameter is n = log \.

Let X have an exponential family distribution. Then
E(¢(X)) = A'(n), Var(t(X)) = A"(n).

Practice Problem: Prove the above result.

1.4 Transformations

Let Y = g(X). Then

where

Then py (y) = Fy(v).

If g is monotonic, then

where h = g~



Example 3 Let px(x) = e for x > 0. Hence Fx(z) =1—e". Let Y = g(X) = log X.
Then

Fy(y) =PY <y) = P(log(X) <y)

= P(X<e)=Fx(e¥)=1—e"
and py (y) = eYe= " fory € R.

Example 4 Practice problem. Let X be uniform on (—1,2) and let Y = X?. Find the
density of Y.

Let Z = g(X,Y). For exampe, Z = X +Y or Z = X/Y. Then we find the pdf of Z as

follows:

1. For each z, find the set A, = {(x,y) : g(x,y) < z}.

2. Find the CDF
Fz(z) = P(Z<z)=PgX,Y)<z)=P({(z,y) : g(z,y) < z}) = // px.y(z,y)dzdy.
3. The pdfis pz(z) = F}(z).

Example 5 Practice problem. Let (X,Y) be uniform on the unit square. Let Z = X/Y .
Find the density of Z.

1.5 Independence

X and Y are independent if and only if

P(X € AY € B)=P(X € A)P(Y € B)

for all A and B.

Theorem 6 Let (X,Y) be a bivariate random vector with pxy(xz,y). X and Y are inde-

pendent iff pxy(z,y) = px(z)py (y).



X1q,...,X, are independent if and only if

n

P(X; € Ar,.... X, € A,) = [[P(X; € A).

=1

Thus, px, .., Xn(wl’ S 73371) = H:’L:l Dx; (xl)
If Xq,...,X, are independent and identically distributed we say they are iid (or that they

are a random sample) and we write

X,...,. Xy,~P o Xy,....X,~F or Xi...,X,~p

1.6 Important Distributions

X ~ N(u,o?) if

If X € R then X ~ N(u, %) if

P = Gt O (—%@ )T e m) |

X ~xpift X =370 | Z2 where Zy,...,Z, ~ N(0,1).
X ~ Bernoulli(d) if P(X =1) =6 and P(X =0) =1 — # and hence

p(z) =6%(1—0)'* x=0,1.

X ~ Binomial(#) if

X ~ Uniform(0, 0) if p(z) = I1(0 <z < 0)/6.



1.7 Sample Mean and Variance

The sample mean is
— 1
X =- Xi7
D

and the sample variance is
1

n—1

Let X1,..., X, be iid with y = E(X;) = u and 0® = Var(X;) = ¢ Then

5 =

> (X - X)

1

E(X)=p, Var(X)= %2, E(S?) = 0.
Theorem 7 If Xi,..., X, ~ N(u,0?) then
(a) X ~ N(u, %)
(b) (n—U—12)S2 ~Xo

(¢c) X and S? are independent

1.8 Delta Method
If X ~ N(p,0?),Y =g(X) and 0? is small then
Y~ N(g(p), o*(g' (1))
To see this, note that
Y =9(X) = g() + (X —p)g' () + Mﬁ/”(é)
for some &. Now E((X — u)?) = 02 which we are assuming is small and so
Y =g(X) = g(n) + (X = w)g'(n)-

Thus

Hence,



Appendix: Useful Facts

Facts about sums

n . n(ntl)
° X iiti="5

n . n(n+1)(2n+1
S 2 = nletDEnt))

e Geometric series: a +ar +ar? +... = 15, for 0 <r < 1.
e Partial Geometric series a + ar +ar? + ... + ar" !t = a(i::n).

Binomial Theorem

=0
e Hypergeometric identity

S ()

T

Common Distributions

Discrete
Uniform

e X~U(,...,N)

X takes values x =1,2,..., N

e P(X=2x)=1/N

e E(X)=Y,aP(X =)=, ot = LNIH) _ (N+D)
) E(XQ) — Zw x2P(X — x) _ xm2]1f _ %N(NH%@N—H)



Binomial
e X ~ Bin(n,p)
e X takes values x =0,1,...,n
o P(X =)= (})p"(1—p)"™*
Hypergeometric
e X ~ Hypergeometric(N, M, K)

.P(X:;y):%

Geometric

o X ~ Geom(p)

Poisson
e X ~ Poisson(\)
e PX=a)=X2=0,1,2,...
e E(X)=Var(X)=2A\

Mx(t) =52 plre AT x Z:;O:o (2et)” S G v

=0 x! z!

o E(X)=XeleMD|,_y =\

Use mgf to show: if X; ~ Poisson(\;), Xo ~ Poisson(Az), independent then Y =
X1 + X5 ~ Poisson(A; + Ag).



Continuous Distributions

Normal
o X ~ N(u,o0?)
o plr) = s exp{zh(e — )}, T ER

mgf Mx (t) = exp{ut + o*t?/2}.

o H(X)=1p

Var (X) = o2

eg,If Z~N(0,1) and X = p+ cZ, then X ~ N(u,c?). Show this...

Proof.

MX(t) - E (etX) - F (et(lH‘UZ)) — ot (etaZ)

— etuMZ(tO_> _ etue(tJ)Q/Z _ 6tu+t202/2

which is the mgf of a N(u,o?).

Alternative proof:

Fx(z) = P(X<$>=P(u+02§a:):P<z<x_“

px() = Fi(@)=ps ("”‘“)g

which is the pdf of a N(u,c?). O
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Gamma

o X ~ I, B).

o px(z) = F(al),@a z*Le=®/8 1 a positive real.

o (o) = [/° %x“ile*w/ﬁdm

Important statistical distribution: x> = I'(%,2).

X% = 5):1 XZQ, Where Xz ~ N(O, 1), lld

Exponential
o X ~ exp(f)
e px(x) = %e*x/ﬁ, x a positive real.

e exp(f) = I'(1,5).

e.g., Used to model waiting time of a Poisson Process. Suppose N is the number of
phone calls in 1 hour and N ~ Poisson(\). Let T be the time between consecutive

phone calls, then 7" ~ exp(1/A) and E(T) = (1/A).

If Xy,...,X, are iid exp(f3), then >, X; ~ I'(n, B).

Memoryless Property: If X ~ exp(/3), then

PX>t+s|X >t)=P(X > s).

Linear Regression

Model the response (Y) as a linear function of the parameters and covariates (x) plus random
error (€).

Y, =0(z,0) + ¢

11



where

O(x,B) = XB = Bo + frx1 + foxa + ... + Bry.

Generalized Linear Model

Model the natural parameters as linear functions of the the covariates.

Example: Logistic Regression.

leRs
PY=1X=12)=—
1+ef"s
In other words, Y|X = x ~ Bin(n,p(z)) and
n(z) ="
where
p(x) )
z)=log | ——— | .
le) =log (1 — p(z)

Logistic Regression consists of modelling the natural parameter, which is called the log odds

ratio, as a linear function of covariates.

Location and Scale Families, CB 3.5
Let p(x) be a pdf.
Location family : {p(z|u) = p(z —p) : p € R}

Scale family : {p(x|0) = lf <£> o> O}
o’ \o

1 _
Location — Scale family : {p(x]u,a) =—f (x M) cpeR o> 0}

o o

(1) Location family. Shifts the pdf.

e.g., Uniform with p(z) =1 on (0,1) and p(x —60) =1 on (6,0 + 1).

12



e.g., Normal with standard pdf the density of a N (0, 1) and location family pdf N (6, 1).
(2) Scale family. Stretches the pdf.

e.g., Normal with standard pdf the density of a N(0,1) and scale family pdf N(0,c?).
(3) Location-Scale family. Stretches and shifts the pdf.

e.g., Normal with standard pdf the density of a N'(0, 1) and location-scale family pdf N (6, o?),

pe., 1p(h) .

L 5 o

Multinomial Distribution

The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball
from an urn with has balls with £ different colors labeled “color 1, color 2, ..., color k.”
Let p = (p1,p2, ..., pk) where 3. p; =1 and p; is the probability of drawing color j. Draw
n balls from the urn (independently and with replacement) and let X = (X, Xo,..., X)
be the count of the number of balls of each color drawn. We say that X has a Multinomial

(n,p) distribution. The pdf is
— n L1 L
p(z) (ml’m’xk)pl SRS

Multivariate Normal Distribution

Let Y € RY. Then Y ~ N(u, ¥) if

ply) = W exp (—%(y — ) Sy - u)) -

Then E(Y) = p and cov(Y) = 3. The moment generating function is
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(b). If Y ~ N(u,X) and c is a scalar, then c¢Y ~ N(cu,c*Y).
(c). Let Y ~ N(u,X). If Aispxmn and b is p x 1, then AY +b~ N(Au+ b, ALAT).

Theorem 9 Suppose that Y ~ N(u, ). Let

Y] Y2
Y:( 1)’ /L:(Ml)’ Z:< 11 12>.
Y, 2 291 22
where Yy and py are p X 1, and X171 18 p X p.
(a). Y1 ~ Np(p1,%11), Yo ~ Npp(pi2, Yiaa).

(b). Y1 and Yy are independent if and only if 312 = 0.
(c). If X9 > 0, then the condition distribution of Y1 given Y3 is

Yi|Yo ~ Np(p + 2122521(33 — f2), 311 — 21222721221)-

Lemma 10 Let Y ~ N(u,0%1), where YT = (Yy,...,Y,), ut = (1, .., pn) and o > 0 is
a scalar. Then the Y; are independent, Y; ~ Ny(u,0?) and

YiE vy (um)
2 |

o? o
Theorem 11 Let Y ~ N(u,X). Then:
(a). YISV ~ xp (057 ).
(b). (Y = p)TE7HY = ) ~ x5 (0).
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