
Lecture Notes 1

Brief Review of Basic Probability

(Casella and Berger Chapters 1-4)

1 Probability Review

Chapters 1-4 are a review. I will assume you have read and understood Chapters

1-4. Let us recall some of the key ideas.

1.1 Random Variables

A random variable is a map X from a set Ω (equipped with a probability P ) to R. We write

P (X ∈ A) = P ({ω ∈ Ω : X(ω) ∈ A})

and we write X ∼ P to mean that X has distribution P . The cumulative distribution

function (cdf) of X is

FX(x) = F (x) = P (X ≤ x).

If X is discrete, its probability mass function (pmf) is

pX(x) = p(x) = P (X = x).

If X is continuous, then its probability density function function (pdf) satisfies

P (X ∈ A) =

∫
A

pX(x)dx =

∫
A

p(x)dx

and pX(x) = p(x) = F ′(x). The following are all equivalent:

X ∼ P, X ∼ F, X ∼ p.

Suppose that X ∼ P and Y ∼ Q. We say that X and Y have the same distribution

if P (X ∈ A) = Q(Y ∈ A) for all A. In that case we say that X and Y are equal in

distribution and we write X
d
= Y .
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It can be shown that X
d
= Y if and only if FX(t) = FY (t) for all t.

1.2 Expected Values

The mean or expected value of g(X) is

E (g(X)) =

∫
g(x)dF (x) =

∫
g(x)dP (x) =


∫∞
−∞ g(x)p(x)dx if X is continuous∑
j g(xj)p(xj) if X is discrete.

Recall that:

1. E(
∑k

j=1 cjgj(X)) =
∑k

j=1 cjE(gj(X)).

2. If X1, . . . , Xn are independent then

E

(
n∏
i=1

Xi

)
=
∏
i

E (Xi) .

3. We often write µ = E(X).

4. σ2 = Var (X) = E ((X − µ)2) is the Variance.

5. Var (X) = E (X2)− µ2.

6. If X1, . . . , Xn are independent then

Var

(
n∑
i=1

aiXi

)
=
∑
i

a2
iVar (Xi) .

7. The covariance is

Cov(X, Y ) = E((X − µx)(Y − µy)) = E(XY )− µXµY

and the correlation is ρ(X, Y ) = Cov(X, Y )/σxσy. Recall that −1 ≤ ρ(X, Y ) ≤ 1.
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The conditional expectation of Y given X is the random variable E(Y |X) whose

value, when X = x is

E(Y |X = x) =

∫
y p(y|x)dy

where p(y|x) = p(x, y)/p(x).

The Law of Total Expectation or Law of Iterated Expectation:

E(Y ) = E
[
E(Y |X)

]
=

∫
E(Y |X = x)pX(x)dx.

The Law of Total Variance is

Var(Y ) = Var
[
E(Y |X)

]
+ E

[
Var(Y |X)

]
.

The moment generating function (mgf) is

MX(t) = E
(
etX
)
.

If MX(t) = MY (t) for all t in an interval around 0 then X
d
= Y .

Check that M
(n)
X (t)|t=0 = E (Xn) .

1.3 Exponential Families

A family of distributions {p(x; θ) : θ ∈ Θ} is called an exponential family if

p(x; θ) = h(x)c(θ) exp

{
k∑
i=1

wi(θ)ti(x)

}
.

Example 1 X ∼ Poisson(λ) is exponential family since

p(x) = P (X = x) =
e−λλx

x!
=

1

x!
e−λ exp{log λ · x}.

Example 2 X ∼ U (0, θ) is not an exponential family. The density is

pX(x) =
1

θ
I(0,θ)(x)
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where IA(x) = 1 if x ∈ A and 0 otherwise.

We can rewrite an exponential family in terms of a natural parameterization. For k = 1 we

have

p(x; η) = h(x) exp{ηt(x)− A(η)}

where

A(η) = log

∫
h(x) exp{ηt(x)}dx.

For example a Poisson can be written as

p(x; η) = exp{ηx− eη}/x!

where the natural parameter is η = log λ.

Let X have an exponential family distribution. Then

E (t(X)) = A′(η), Var (t(X)) = A′′(η).

Practice Problem: Prove the above result.

1.4 Transformations

Let Y = g(X). Then

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) =

∫
A(y)

pX(x)dx

where

Ay = {x : g(x) ≤ y}.

Then pY (y) = F ′Y (y).

If g is monotonic, then

pY (y) = pX(h(y))

∣∣∣∣dh(y)

dy

∣∣∣∣
where h = g−1.
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Example 3 Let pX(x) = e−x for x > 0. Hence FX(x) = 1 − e−x. Let Y = g(X) = logX.

Then

FY (y) = P (Y ≤ y) = P (log(X) ≤ y)

= P (X ≤ ey) = FX(ey) = 1− e−ey

and pY (y) = eye−e
y

for y ∈ R.

Example 4 Practice problem. Let X be uniform on (−1, 2) and let Y = X2. Find the

density of Y .

Let Z = g(X, Y ). For exampe, Z = X + Y or Z = X/Y . Then we find the pdf of Z as

follows:

1. For each z, find the set Az = {(x, y) : g(x, y) ≤ z}.

2. Find the CDF

FZ(z) = P (Z ≤ z) = P (g(X, Y ) ≤ z) = P ({(x, y) : g(x, y) ≤ z}) =

∫ ∫
Az

pX,Y (x, y)dxdy.

3. The pdf is pZ(z) = F ′Z(z).

Example 5 Practice problem. Let (X, Y ) be uniform on the unit square. Let Z = X/Y .

Find the density of Z.

1.5 Independence

X and Y are independent if and only if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all A and B.

Theorem 6 Let (X, Y ) be a bivariate random vector with pX,Y (x, y). X and Y are inde-

pendent iff pX,Y (x, y) = pX(x)pY (y).
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X1, . . . , Xn are independent if and only if

P(X1 ∈ A1, . . . , Xn ∈ An) =
n∏
i=1

P(Xi ∈ Ai).

Thus, pX1,...,Xn(x1, . . . , xn) =
∏n

i=1 pXi(xi).

If X1, . . . , Xn are independent and identically distributed we say they are iid (or that they

are a random sample) and we write

X1, . . . , Xn ∼ P or X1, . . . , Xn ∼ F or X1, . . . , Xn ∼ p.

1.6 Important Distributions

X ∼ N(µ, σ2) if

p(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2).

If X ∈ Rd then X ∼ N(µ,Σ) if

p(x) =
1

(2π)d/2|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

X ∼ χ2
p if X =

∑p
j=1 Z

2
j where Z1, . . . , Zp ∼ N(0, 1).

X ∼ Bernoulli(θ) if P(X = 1) = θ and P(X = 0) = 1− θ and hence

p(x) = θx(1− θ)1−x x = 0, 1.

X ∼ Binomial(θ) if

p(x) = P(X = x) =

(
n

x

)
θx(1− θ)n−x x ∈ {0, . . . , n}.

X ∼ Uniform(0, θ) if p(x) = I(0 ≤ x ≤ θ)/θ.
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1.7 Sample Mean and Variance

The sample mean is

X =
1

n

∑
i

Xi,

and the sample variance is

S2 =
1

n− 1

∑
i

(Xi −X)2.

Let X1, . . . , Xn be iid with µ = E(Xi) = µ and σ2 = Var(Xi) = σ2. Then

E(X) = µ, Var(X) =
σ2

n
, E(S2) = σ2.

Theorem 7 If X1, . . . , Xn ∼ N(µ, σ2) then

(a) X ∼ N(µ, σ
2

n
)

(b) (n−1)S2

σ2 ∼ χ2
n−1

(c) X and S2 are independent

1.8 Delta Method

If X ∼ N(µ, σ2), Y = g(X) and σ2 is small then

Y ≈ N(g(µ), σ2(g′(µ))2).

To see this, note that

Y = g(X) = g(µ) + (X − µ)g′(µ) +
(X − µ)2

2
g′′(ξ)

for some ξ. Now E((X − µ)2) = σ2 which we are assuming is small and so

Y = g(X) ≈ g(µ) + (X − µ)g′(µ).

Thus

E(Y ) ≈ g(µ), Var(Y ) ≈ (g′(µ))2σ2.

Hence,

g(X) ≈ N
(
g(µ), (g′(µ))2σ2

)
.
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Appendix: Useful Facts

Facts about sums

•
∑n

i=1 i = n(n+1)
2

.

•
∑n

i=1 i
2 = n(n+1)(2n+1)

6
.

• Geometric series: a+ ar + ar2 + . . . = a
1−r , for 0 < r < 1.

• Partial Geometric series a+ ar + ar2 + . . .+ arn−1 = a(1−rn)
1−r .

• Binomial Theorem

n∑
x=0

(
n

x

)
ax = (1 + a)n,

n∑
x=0

(
n

x

)
axbn−x = (a+ b)n.

• Hypergeometric identity

∞∑
x=0

(
a

x

)(
b

n− x

)
=

(
a+ b

n

)
.

Common Distributions

Discrete

Uniform

• X ∼ U (1, . . . , N)

• X takes values x = 1, 2, . . . , N

• P (X = x) = 1/N

• E (X) =
∑

x xP (X = x) =
∑

x x
1
N

= 1
N
N(N+1)

2
= (N+1)

2

• E (X2) =
∑

x x
2P (X = x) =

∑
x x

2 1
N

= 1
N
N(N+1)(2N+1)

6
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Binomial

• X ∼ Bin(n, p)

• X takes values x = 0, 1, . . . , n

• P (X = x) =
(
n
x

)
px(1− p)n−x

Hypergeometric

• X ∼ Hypergeometric(N,M,K)

• P (X = x) =
(Mx )(N−MK−x )

(NK)

Geometric

• X ∼ Geom(p)

• P (X = x) = (1− p)x−1p, x = 1, 2, . . .

• E (X) =
∑

x x(1− p)x−1 = p
∑

x
d
dp

(−(1− p)x) = p p
p2

= 1
p
.

Poisson

• X ∼ Poisson(λ)

• P (X = x) = e−λλx

x!
x = 0, 1, 2, . . .

• E (X) = Var (X) = λ

• MX(t) =
∑∞

x=0 e
tx e−λλx

x!
= e−λ

∑∞
x=0

(λet)
x

x!
= e−λeλe

t
= eλ(et−1).

• E (X) = λeteλ(et−1)|t=0 = λ.

• Use mgf to show: if X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2), independent then Y =

X1 +X2 ∼ Poisson(λ1 + λ2).
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Continuous Distributions

Normal

• X ∼ N(µ, σ2)

• p(x) = 1√
2πσ

exp{ −1
2σ2 (x− µ)2}, x ∈ R

• mgf MX(t) = exp{µt+ σ2t2/2}.

• E (X) = µ

• Var (X) = σ2.

• e.g., If Z ∼ N(0, 1) and X = µ+ σZ, then X ∼ N(µ, σ2). Show this...

Proof.

MX(t) = E
(
etX
)

= E
(
et(µ+σZ)

)
= etµE

(
etσZ

)
= etµMZ(tσ) = etµe(tσ)2/2 = etµ+t2σ2/2

which is the mgf of a N(µ, σ2).

Alternative proof:

FX(x) = P (X ≤ x) = P (µ+ σZ ≤ x) = P

(
Z ≤ x− µ

σ

)
= FZ

(
x− µ
σ

)
pX(x) = F ′X(x) = pZ

(
x− µ
σ

)
1

σ

=
1√
2π

exp

{
−1

2

(
x− µ
σ

)2
}

1

σ

=
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2
}
,

which is the pdf of a N(µ, σ2). �
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Gamma

• X ∼ Γ(α, β).

• pX(x) = 1
Γ(α)βα

xα−1e−x/β, x a positive real.

• Γ(α) =
∫∞

0
1
βα
xα−1e−x/βdx.

• Important statistical distribution: χ2
p = Γ(p

2
, 2).

• χ2
p =

∑p
i=1 X

2
i , where Xi ∼ N(0, 1), iid.

Exponential

• X ∼ exp(β)

• pX(x) = 1
β
e−x/β, x a positive real.

• exp(β) = Γ(1, β).

• e.g., Used to model waiting time of a Poisson Process. Suppose N is the number of

phone calls in 1 hour and N ∼ Poisson(λ). Let T be the time between consecutive

phone calls, then T ∼ exp(1/λ) and E (T ) = (1/λ).

• If X1, . . . , Xn are iid exp(β), then
∑

iXi ∼ Γ(n, β).

• Memoryless Property: If X ∼ exp(β), then

P (X > t+ s|X > t) = P (X > s).

Linear Regression

Model the response (Y ) as a linear function of the parameters and covariates (x) plus random

error (ε).

Yi = θ(x, β) + εi
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where

θ(x, β) = Xβ = β0 + β1x1 + β2x2 + . . .+ βkxk.

Generalized Linear Model

Model the natural parameters as linear functions of the the covariates.

Example: Logistic Regression.

P (Y = 1|X = x) =
eβ

T x

1 + eβT x
.

In other words, Y |X = x ∼ Bin(n, p(x)) and

η(x) = βTx

where

η(x) = log

(
p(x)

1− p(x)

)
.

Logistic Regression consists of modelling the natural parameter, which is called the log odds

ratio, as a linear function of covariates.

Location and Scale Families, CB 3.5

Let p(x) be a pdf.

Location family : {p(x|µ) = p(x− µ) : µ ∈ R}

Scale family :

{
p(x|σ) =

1

σ
f
(x
σ

)
: σ > 0

}
Location− Scale family :

{
p(x|µ, σ) =

1

σ
f

(
x− µ
σ

)
: µ ∈ R, σ > 0

}

(1) Location family. Shifts the pdf.

e.g., Uniform with p(x) = 1 on (0, 1) and p(x− θ) = 1 on (θ, θ + 1).
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e.g., Normal with standard pdf the density of a N(0, 1) and location family pdf N(θ, 1).

(2) Scale family. Stretches the pdf.

e.g., Normal with standard pdf the density of a N(0, 1) and scale family pdf N(0, σ2).

(3) Location-Scale family. Stretches and shifts the pdf.

e.g., Normal with standard pdf the density of aN(0, 1) and location-scale family pdfN(θ, σ2),

i.e., 1
σ
p(x−µ

σ
) .

Multinomial Distribution

The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball

from an urn with has balls with k different colors labeled “color 1, color 2, . . . , color k.”

Let p = (p1, p2, . . . , pk) where
∑

j pj = 1 and pj is the probability of drawing color j. Draw

n balls from the urn (independently and with replacement) and let X = (X1, X2, . . . , Xk)

be the count of the number of balls of each color drawn. We say that X has a Multinomial

(n, p) distribution. The pdf is

p(x) =

(
n

x1, . . . , xk

)
px1

1 . . . pxkk .

Multivariate Normal Distribution

Let Y ∈ Rd. Then Y ∼ N(µ,Σ) if

p(y) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
.

Then E(Y ) = µ and cov(Y ) = Σ. The moment generating function is

M(t) = exp

(
µT t+

tTΣt

2

)
.

Theorem 8 (a). If Y ∼ N(µ,Σ), then E(Y ) = µ, cov(Y ) = Σ.
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(b). If Y ∼ N(µ,Σ) and c is a scalar, then cY ∼ N(cµ, c2Σ).

(c). Let Y ∼ N(µ,Σ). If A is p× n and b is p× 1, then AY + b ∼ N(Aµ+ b, AΣAT ).

Theorem 9 Suppose that Y ∼ N(µ,Σ). Let

Y =

(
Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

where Y1 and µ1 are p× 1, and Σ11 is p× p.

(a). Y1 ∼ Np(µ1,Σ11), Y2 ∼ Nn−p(µ2,Σ22).

(b). Y1 and Y2 are independent if and only if Σ12 = 0.

(c). If Σ22 > 0, then the condition distribution of Y1 given Y2 is

Y1|Y2 ∼ Np(µ1 + Σ12Σ−1
22 (Y2 − µ2),Σ11 − Σ12Σ−1

22 Σ21).

Lemma 10 Let Y ∼ N(µ, σ2I), where Y T = (Y1, . . . , Yn), µT = (µ1, . . . , µn) and σ2 > 0 is

a scalar. Then the Yi are independent, Yi ∼ N1(µ, σ2) and

||Y ||2

σ2
=
Y TY

σ2
∼ χ2

n

(
µTµ

σ2

)
.

Theorem 11 Let Y ∼ N(µ,Σ). Then:

(a). Y TΣ−1Y ∼ χ2
n(µTΣ−1µ).

(b). (Y − µ)TΣ−1(Y − µ) ∼ χ2
n(0).
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