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ML Algorithm Pipeline

Training Data
Target Function:
Predictor/Classifier/
Representation….

Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP….)
3. Select optimizer
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Linear Predictor

d=1



Binary Classification Algorithms

Training Data Predictor
Learning Algorithm

Binary Logistic Regression Pipeline

1. Build probabilistic models: 
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Binary Classification Algorithms
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Logistic Regression is a Linear Classifier 

● Decision boundaries for Logistic Regression?
○ At the decision boundary, label 1/0 are equiprobable.

to be equal:                             ,  whose only solution is  

✓ ⇒ Decision boundary is linear.

✓ ⇒ Logistic regression is a probabilistic linear classifier.



Multiclass Logistic Regression Algorithms

Training Data Classifier
Learning Algorithm

Multiclass Logistic Regression Pipeline

1. Build probabilistic models: 
Categorical Distribution + Linear Model

2. Derive loss function: MLE and MAP
3. Select optimizer: (Stochastic) Gradient Descent

Multiclass Classification
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Multiclass Logistic Regression is a Linear Classifier 

● Decision boundaries for Multiclass Logistic Regression?

✓ ⇒ Decision boundary is linear.

✓ ⇒ Multiclass Logistic regression is a probabilistic linear classifier.



Naive Bayes Classification 

Training Data Classifier
Learning Algorithm

Gaussian Naive Bayes Pipeline

1. Build probabilistic models
Multinomial + Gaussian Likelihood => 
Quadratic/Linear  

2. Derive loss function (by MLE or MAP)
3. Select optimizer

Closed-form from Necessary Condition

Multiclass Classification
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● Depending on the Gaussian distributions, the decision boundary can be very 
different  

● Decision boundary: 



Limitations of Linear Predictor/Classifier

● Linear predictor/classifiers (e.g., logistic regression) classify inputs based on 
linear combinations of features xi

● Many decisions involve non-linear functions of the input

d=1



Limitations of Linear Classifier

● Linear classifiers (e.g., logistic regression) classify inputs based on linear 
combinations of features xi

● Many decisions involve non-linear functions of the input

● The positive and negative cases cannot be separated by a plane



Nonlinear Parametrization: Polynomial Regression 

Training Data Predictor
Learning Algorithm
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Learning Algorithm



Nonlinear Parametrization: Polynomial Regression 

Training Data Predictor
Learning Algorithm

Combinatorial Parametrization



Better Nonlinear Parametrization: Neural Network

Logistic Regression Revisit



Better Nonlinear Parametrization: Neural Network

Neuron                Logistic Regression
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Alternative Neurons

● Use different nonlinear transformations

● Before that, perform weighted combination 
of inputs 



Multi-Layer Perception: Composition of Neurons

● The classifier/regressor is a multilayer network of units
● Each unit takes some inputs and produces one output. Output of one unit 

can be the input of another.
○ Advantage: Can produce highly non-linear decision boundaries!
○ Sigmoid is differentiable, so can use gradient descent

Input layer Hidden layer Output layer



Forward Pass in MLP

● Each input xn  transformed into several “pre-activations”

using linear models
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Forward Pass in MLP
● Each input xn  transformed into several “pre-activations”

using linear models

● Nonlinear activation applied on each 
pre-activation

● A linear model applied on the new “features”

● Finally, the output is produced as
● Unknowns of the model                        learned

by minimizing a loss                          , e.g,
squared, logistic, softmax, etc (depending on the
output)



Compact Illustration



Multi-Layer, Multi-Hidden Units and Multi-Outputs 
Extension

Hidden layer 1

Hidden layer 2

Hidden layer L



Multi-layer Perception for XOR problem

A possible set of weight:

x_1 x_2 y (color)

0 0 1

0 1 0

1 0 0

1 1 1



Representational Power

● Neural network with at least one hidden layer is a universal approximator (can 
represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

● The capacity of the network increases with more hidden units and more 
hidden layers

https://www.semanticscholar.org/paper/Approximation-by-superpositions-of-a-sigmoidal-Cybenko/8da1dda34ecc96263102181448c94ec7d645d085


Representational Power

● Neural network with at least one hidden layer is a universal approximator (can 
represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

● The capacity of the network increases with more hidden units and more 
hidden layers (Depth vs. Width)

https://www.semanticscholar.org/paper/Approximation-by-superpositions-of-a-sigmoidal-Cybenko/8da1dda34ecc96263102181448c94ec7d645d085


Neural Network Architecture

Multi-Layer Perceptron (MLP, 60’s -):

FF with Fully connected (dense) layers: each unit of 
layer i is fully connected with the units of the previous 
layer

Convolutional Neural Network (CNN):
Not (all) fully connected layers

Deep network (>3 hidden layers?) 



AlexNet

● 8 layer convolution neural network [Krizhevsky et al. 2012]  achieved the 
state-of-the-art result (beating the second place by 10%).
○ Fist 5 layers: convolution + max pooling
○ Next 2 layers: fully connected nonlinear neurons
○ Last layer: multiclass logistic regression

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


Generative Pretrained Transformer (GPT)



Q&A


