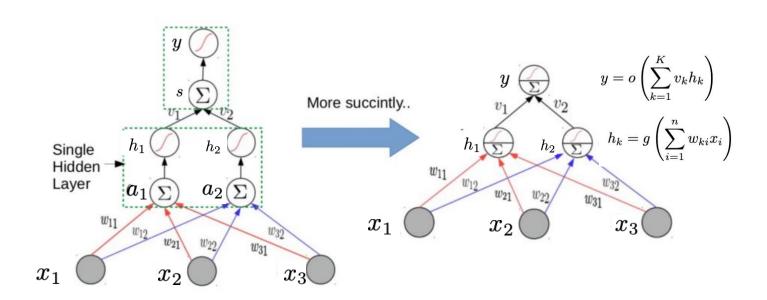


CS4641 Spring 2025 Neural Networks: Backpropagation

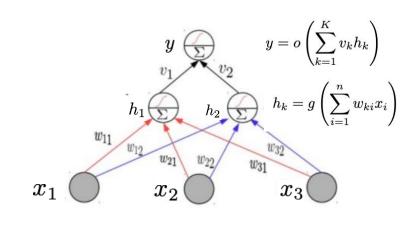
Bo Dai School of CSE, Georgia Tech bodai@cc.gatech.edu

Neural Network Revisit

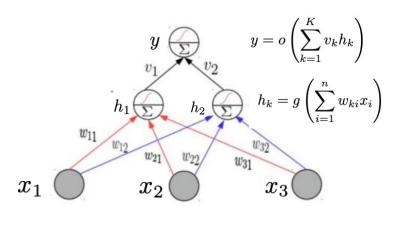


$$W = egin{bmatrix} w_{11} & w_{21} & w_{31} \ w_{12} & w_{22} & w_{32} \end{bmatrix}$$

$$x = [x_1, x_2, x_3]^\top$$



$$h = [h_1, h_2]^{ op} = g(Wx)$$
 $W = egin{bmatrix} w_{11} & w_{21} & w_{31} \ w_{12} & w_{22} & w_{32} \end{bmatrix}$
 $x = [x_1, x_2, x_3]^{ op}$



$$y = o(Vh)$$
 $V = [v_1, v_2]$
 $h = [h_1, h_2]^{\top} = g(Wx)$
 $W = \begin{bmatrix} w_{11} & w_{21} & w_{31} \ w_{12} & w_{22} & w_{32} \end{bmatrix}$

 $x = [x_1, x_2, x_3]^\top$

$$y$$
 $y = o\left(\sum_{k=1}^K v_k h_k
ight)$ h_1 h_2 $h_k = g\left(\sum_{i=1}^n w_{ki} x_i
ight)$ w_{11} w_{12} w_{21} w_{22} w_{31} w_{31} w_{32}

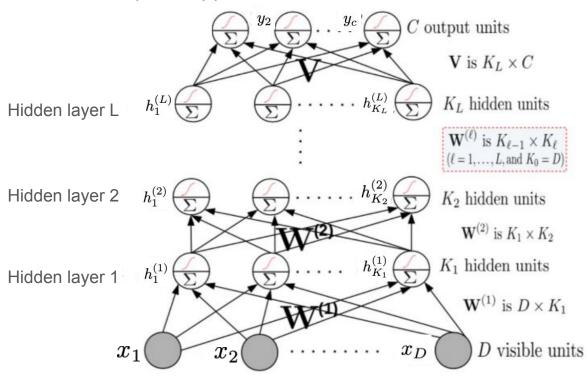
 $x = [x_1, x_2, x_3]^{\top}$

$$y = o(Vg(Wx))$$

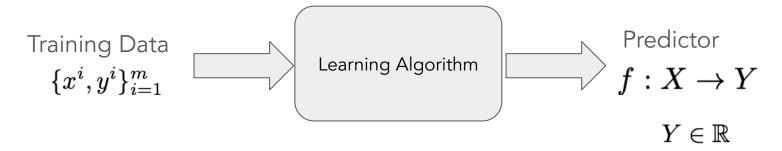
$$V = [v_1, v_2] \ h = [h_1, h_2]^ op = g(Wx) \ W = egin{bmatrix} w_{11} & w_{21} & w_{31} \ w_{12} & w_{22} & w_{32} \end{bmatrix} \ x_1 & x_2 & x_3 \end{pmatrix}$$

Multi-Layer Perception

$$y = f_L(W_L f_{L-1}(W_{L-1} \dots f_1(W_1 x)))$$



Regression Algorithms



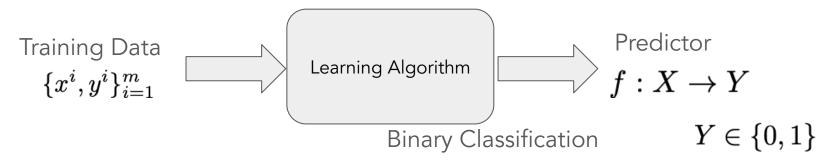
Linear Regression Pipeline

- Build probabilistic models:
 Gaussian Distribution + Neural Network
 - Derive loss function: MLE and MAP

y = o(Vg(Wx))

3. Select optimizer: (Stochastic) GD

Binary Classification Algorithms



Binary Logistic Regression Pipeline

- 1. Build probabilistic models: Bernoulli Distribution + Neural Network y = o(Vg(Wx))
- Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

Multiclass Logistic Regression Algorithms

Multiclass Classification
Multiclass Logistic Regression Pipeline

- $Y \in \{0, 1, \dots, k\}$
- 1. Build probabilistic models: Categorical Distribution + Neural Network y = o(Vg(Wx))
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

$$L(\theta) = \sum_{i=1}^{m} \ell(x^{i}, y^{i}, \theta) + \lambda \Omega(\theta)$$

 $\theta = [V, W]$

$$\ell(x^i, y^i, \theta) = (o(Vg(Wx^i)) - y^i)^2$$

$$\ell(x^{i}, y^{i}, \theta) = (o(Vg(Wx^{i})) - y^{i})^{2}$$

$$L(\theta) = \sum_{i=1}^{m} \ell(x^{i}, y^{i}, \theta) + \lambda \Omega(\theta)$$

$$\ell(x^{i}, y^{i}, \theta) = -y^{i} \log \sigma(o(Vg(Wx^{i})))$$

$$-(1 - y^{i}) \log(1 - \sigma(o(V_{j}g(Wx^{i}))))$$

$$\theta = [V, W]$$

$$\ell(x^{i}, y^{i}, \theta) = (o(Vg(Wx^{i})) - y^{i})^{2}$$

$$L(\theta) = \sum_{i=1}^{m} \ell(x^{i}, y^{i}, \theta) + \lambda \Omega(\theta)$$

$$\ell(x^{i}, y^{i}, \theta) = -y^{i} \log \sigma(o(Vg(Wx^{i})))$$

$$-(1 - y^{i}) \log(1 - \sigma(o(V_{j}g(Wx^{i}))))$$

$$\ell(x^{i}, y^{i}, \theta) = -\sum_{i=1}^{k} y^{i} \log \frac{\exp(o(V_{j}g(Wx^{i})))}{\sum_{c=1}^{k} \exp(o(V_{c}g(Wx^{i})))}$$

$$\ell(x^{i}, y^{i}, \theta) = (o(Vg(Wx^{i})) - y^{i})^{2}$$

$$L(\theta) = \sum_{i=1}^{m} \ell(x^{i}, y^{i}, \theta) + \lambda \Omega(\theta)$$

$$\ell(x^{i}, y^{i}, \theta) = -y^{i} \log \sigma(o(Vg(Wx^{i})))$$

$$-(1 - y^{i}) \log(1 - \sigma(o(V_{j}g(Wx^{i}))))$$

$$\ell(x^{i}, y^{i}, \theta) = -\sum_{i=1}^{k} y^{i} \log \frac{\exp(o(V_{j}g(Wx^{i})))}{\sum_{c=1}^{k} \exp(o(V_{c}g(Wx^{i})))}$$

(Stochastic) Gradient Descent

(Stochastic) Gradient Descent

• Initialize parameter $heta^0$

• Sample
$$\{x^i, y^i\}_{i=1}^B$$

• Do
$$\theta^{t+1} \leftarrow \theta^t - \eta \sum_{i=1}^B \nabla_{\theta} \ell(x^i, y^i, \theta^t) - (\lambda \nabla \Omega(\theta^t))$$

Chain Rule

• A composite function is the combination of two functions: a function that takes as input the output of another function

$$h(\theta) = g(f(\theta)) \hspace{0.5cm} \theta \longrightarrow f(\theta) \hspace{0.5cm} \longrightarrow g(\theta) \hspace{0.5cm} \longrightarrow \text{output} \hspace{0.2cm} h(\theta)$$

E.g,
$$f(\theta) = 2\theta + 1$$
, $g(\theta) = \theta^4$, $h(\theta) = (2\theta + 1)^4$

Let's call $u = f(\theta)$ the output of the inner function $\rightarrow h(\theta) = g(u)$

$$h' = \frac{dh}{d\theta} = \frac{dh}{du}\frac{du}{d\theta}$$

$$\frac{dh}{du} = 4(2\theta + 1)^3 \qquad \qquad \frac{du}{d\theta} = 2 \qquad \qquad h' = 8(2\theta + 1)^3$$

Derivative of outer part of $h(\theta)$ Derivative of inner part of $h(\theta)$

Chain Rule

$$h(\theta) = g(f(\theta))$$

$$u = f(\theta)$$
where $\theta \in \mathbb{R}^m, \mathbf{u} \in \mathbb{R}^n$

$$f: \mathbb{R}^m \to \mathbb{R}$$

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

$$g: \mathbb{R}^n \to \mathbb{R}$$
Vector function

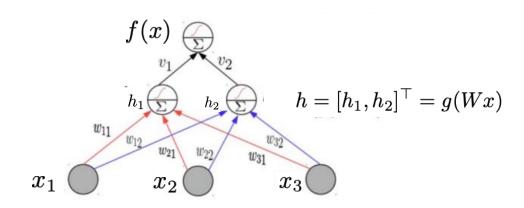
The inner vector function f maps m inputs to n outputs, while the outer function g receives n inputs to produce one output, h.

The chain rule allows to compute the variation (i.e., the partial derivative) of the function w.r.t. each component of the multivariate input \rightarrow Gradient vector of $h(\theta)$

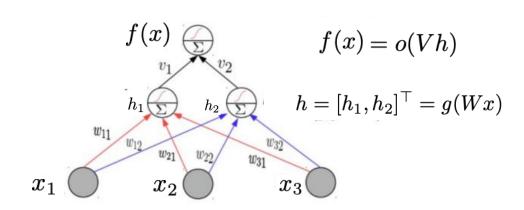
$$\frac{\partial h}{\partial \theta_i} = \frac{\partial h}{\partial u_1} \frac{\partial u_1}{\partial \theta_i} + \frac{\partial h}{\partial u_2} \frac{\partial u_2}{\partial \theta_i} + \dots + \frac{\partial h}{\partial u_n} \frac{\partial u_n}{\partial \theta_i} = \sum_{j=1}^{\bar{n}} \frac{\partial h}{\partial u_j} \frac{\partial u_j}{\partial \theta_i} \qquad i = 1, \dots, m$$

$$abla h(heta) = \left(rac{\partial h}{\partial heta_1}, rac{\partial h}{\partial heta_2}, \ldots, rac{\partial h}{\partial heta_m}
ight)^T$$

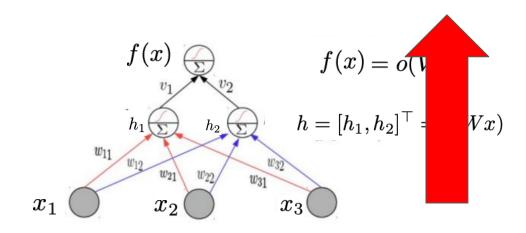
$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$



$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

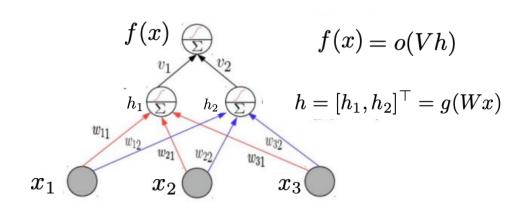


$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$



$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\nabla_{\theta}\ell(x^i,y^i,\theta)$$



$$egin{aligned} \ellig(x^i,y^i, hetaig) &= ig(fig(x^i,V,Wig)-y^iig)^2 \
abla_{ heta}\ell(x^i,y^i, heta) &= igg[rac{\partial\ell(x^i,y^i, heta)}{\partial V},rac{\partial\ell(x^i,y^i, heta)}{\partial W}igg] \
abla_{ heta}\ell(x^i,y^i, heta) &= rac{\partial\ell(x^i,y^i, heta)}{\partial f}rac{\partial f}{\partial V} & f(x) &= o(Vh) \
abla_{ heta}\ell(x^i,y^i, heta) &= h_1 &= h_2 &= h &= [h_1,h_2]^\top &= g(Wx) \
abla_{ heta}\ell(x^i,y^i, heta) &= h_2 &= h_1 &= h_2 &= h_2 &= h_1 &= h_2 &=$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^i, y^i, \theta)}{\partial V} = \frac{\partial \ell(x^i, y^i, \theta)}{\partial f} \frac{\partial f}{\partial V} \qquad f(x) = o(Vh)$$

$$\frac{\partial f(x)}{\partial V} = \frac{\partial o(Vh)}{\partial V} \qquad h_1 \qquad h_2 \qquad h = [h_1, h_2]^\top = g(Wx)$$

$$x_1 \qquad x_2 \qquad x_3$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial V} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial f}{\partial V}$$

$$\frac{\partial f(x)}{\partial V} = \frac{\partial o(Vh)}{\partial V}$$

$$= \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial V}$$

$$x_{1}$$

$$f(x) = o(Vh)$$

$$h_{1} \sum_{v_{1}} h_{2} \sum_{v_{2}} h = [h_{1}, h_{2}]^{\top} = g(Wx)$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial W} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial f}{\partial W} \qquad f(x) = o(Vh)$$

$$\frac{\partial f}{\partial W} = \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} = \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} = \frac{h_{1} \sum_{v_{1}} h_{2} \sum_{v_{21}} h = [h_{1}, h_{2}]^{\top} = g(Wx)}{x_{1}}$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial W} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial f}{\partial W} \qquad f(x) = o(Vh)$$

$$\frac{\partial f}{\partial W} = \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} = \frac{\partial o(Wh)}{\partial W} \frac{\partial h}{\partial W} = \frac{\partial g(Wx)}{\partial W} = \frac{\partial g(Wx)$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial W} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial f}{\partial W} \qquad f(x) = o(Vh)$$

$$\frac{\partial f}{\partial W} = \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} = \frac{\partial o(Vh)}{\partial W} \frac{\partial h}{\partial W} = \frac{\partial g(Wx)}{\partial W} = \frac{\partial g(Wx)}{\partial W} = \frac{\partial f}{\partial W} = \frac{\partial g(Wx)}{\partial W} = \frac{\partial g$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial V} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial V} \qquad f(x) = o(Vh)$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial W} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} \qquad x_{1}$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial V} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} \qquad x_{2}$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial V} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W}$$

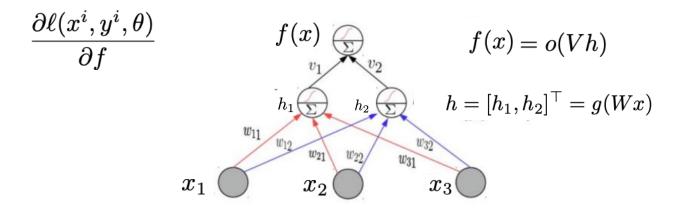
$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^i, y^i, \theta)}{\partial V} = \frac{\partial \ell(x^i, y^i, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial V} \qquad f(x) = o(Vh)$$

$$\frac{\partial \ell(x^i, y^i, \theta)}{\partial W} = \frac{\partial \ell(x^i, y^i, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W} \qquad h_1 \qquad h_2 \qquad h = [h_1, h_2]^\top = g(Wx)$$

$$x_1 \qquad x_2 \qquad x_3$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$



$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^i, y^i, \theta)}{\partial V} = \frac{\partial \ell(x^i, y^i, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial V}$$

$$\frac{\partial \ell(x^i, y^i, \theta)}{\partial W} = \frac{\partial \ell(x^i, y^i, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial h}{\partial W}$$

$$\frac{\partial o(Vh)}{\partial W} \frac{\partial h}{\partial W} \frac{h_1 \sum_{w_{11}} h_2 \sum_{w_{22}} h = [h_1, h_2]^\top = g(Wx)}{x_1 \sum_{w_{21}} w_{22} \sum_{w_{31}} x_3}$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \qquad f(x) = o(Vh)$$

$$\frac{\partial o(Vh)}{\partial V} \quad \frac{\partial o(Vh)}{\partial h} \qquad h_{1} \sum_{w_{11}} h_{2} \sum_{w_{22}} h = [h_{1}, h_{2}]^{\top} = g(Wx)$$

$$x_{1} \qquad x_{2} \qquad x_{3}$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

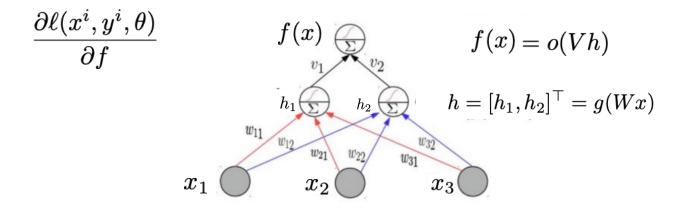
$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial V} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial V} \qquad f(x) = o(Vh)$$

$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial W} = \frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \frac{\partial o(Vh)}{\partial h} \frac{\partial o(Vh)}{\partial W} \qquad h_{1} \sum_{w_{11}} h_{2} \sum_{w_{21}} h = [h_{1}, h_{2}]^{\top} = g(Wx)$$

$$x_{1} \qquad x_{2} \qquad x_{3}$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$



$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

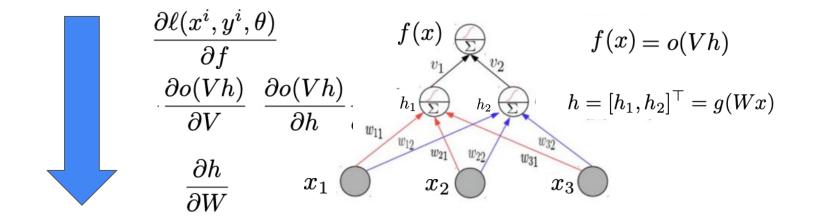
$$\frac{\partial \ell(x^{i}, y^{i}, \theta)}{\partial f} \qquad f(x) = o(Vh)$$

$$\frac{\partial o(Vh)}{\partial V} \quad \frac{\partial o(Vh)}{\partial h} \qquad h_{1} \sum_{w_{11}} h_{2} \sum_{w_{22}} h = [h_{1}, h_{2}]^{\top} = g(Wx)$$

$$x_{1} \qquad x_{2} \qquad x_{3}$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$

$$\ell(x^i, y^i, \theta) = (f(x^i, \mathbf{V}, \mathbf{W}) - y^i)^2$$



Backward Pass

(Stochastic) Gradient Descent

• Initialize parameter $heta^0$

• Sample
$$\{x^i, y^i\}_{i=1}^B$$

• Do $\theta^{t+1} \leftarrow \theta^t - \eta \sum_{i=1}^{D} \nabla_{\theta} \ell(x^i, y^i, \theta^t) - (\lambda \nabla \Omega(\theta^t))$

Auto-differentiation Packages

PyTorch JAX Tensorflow

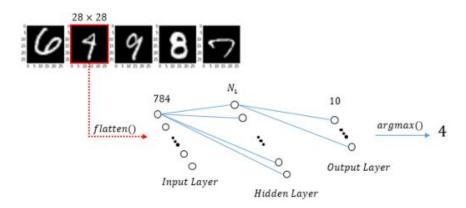
O PyTorch

TensorFlow

TensorFlow

MLP example: MNIST

MNIST hand-written character recognition



- 60,000 images
- 28x28 pixels = 784
- Grayscale, from 0 to 255 → Converted to [0,1]

PyTorch

```
#@title Define model class
class Net(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes):
    super(Net, self).__init__()
    self.fc1 = nn.Linear(input_size, hidden_size)
    self.relu = nn.ReLU()
    self.fc2 = nn.Linear(hidden_size, num_classes)
  def forward(self,x):
    out = self.fc1(x)
    out = self.relu(out)
    out = self.fc2(out)
    return out
```

```
#@title Define loss-function & optimizer
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam( net.parameters(), lr=lr)
```

PyTorch

```
#@title Training the model

for epoch in range(num_epochs):
    for i ,(images,labels) in enumerate(train_gen):
        images = Variable(images.view(-1,28*28)).cuda()
        labels = Variable(labels).cuda()

        optimizer.zero_grad()
        outputs = net(images)
        loss = loss_function(outputs, labels)
        loss.backward()
        optimizer.step()
```

A&D