

CS4641 Spring 2025 Unsupervised Learning: Gaussian Mixture Models

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Supervised Learning vs. Unsupervised Learning

Supervised Learning vs. Unsupervised Learning

Supervised Learning vs. Unsupervised Learning

Density Estimation

 $\{x_i\}_{i=1}^m$

p(x)

Density Estimation

Generative Models

$$x \sim p(x)$$

 ${x_i}_{i=1}^m$

p(x)

Density Estimation: Generative Models

 $x \sim p(x)$

Clustering

Clustering: Data Organization

Dimension Reduction/Representation Learning

Density Estimation

Density Estimation Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Gaussian Distribution

Density Estimation

Density Estimation Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

MLE of Gaussian Model

The log-likelihood is given by

$$\log L(\mu, \Sigma) = \sum_{i=1}^{m} \log p(x_i | \mu, \Sigma) = -\frac{mn}{2} \log(2\pi) - \frac{m}{2} \log|\Sigma| - \frac{1}{2} \sum_{i=1}^{m} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

The maximum likelihood estimator is

$$(\hat{\mu}, \hat{\Sigma}) = \arg \max_{\mu, \Sigma} \log p(\mathbf{X} \mid \mu, \Sigma)$$

Density Estimation

Density Estimation Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Gradient Calculation of MLE

$$\nabla_{\mu} \log p(\mathbf{X} \mid \mu, \Sigma) = \Sigma^{-1} \sum_{i=1}^{m} (\mathbf{x}_i - \mu)$$

$$\nabla_{\Sigma} \log p(\mathbf{X} \mid \mu, \Sigma) = -\frac{m}{2} \Sigma^{-1} + \frac{1}{2} \sum_{i=1}^{m} \Sigma^{-1} \left(\mathbf{x}_{i} - \mu \right) \left(\mathbf{x}_{i} - \mu \right)^{T} \Sigma^{-1}$$

The closed-form solution is

$$\hat{\mu}_{\text{MLE}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \qquad \hat{\Sigma}_{\text{MLE}} = \frac{1}{m} \sum_{i=1}^{m} \left(\mathbf{x}_{i} - \hat{\mu}_{\text{MLE}} \right) \left(\mathbf{x}_{i} - \hat{\mu}_{\text{MLE}} \right)^{T}$$

Density Estimation: Gaussian Model

Density Estimation Pipeline

- 1. Build probabilistic models Gaussian Distribution
- 2. Derive loss function (by MLE or MAP....) MLE
- 3. Select optimizer Necessary Condition

Mixture of Gaussians

Mixture of Gaussians

Density Estimation

Density Estimation Pipeline

- 1. Build probabilistic models Gaussian Mixture Models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Gaussian Mixture Model

Class mixture prior:
$$P(y)$$
 $\pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0$

Class conditional distribution:

$$p(x|y) = \mathcal{N}(x|\mu_y, \Sigma_y)$$

Marginal distribution:

$$P(x) = \sum_{y} P(x|y)P(y) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \Sigma_i)$$

Connection to Gaussian Naive Bayes

$$P(y|x) = rac{P(x|y)P(y)}{P(x)} = rac{P(x,y)}{\sum_z P(x,y)}$$

Prior:
$$P(y)$$
 $\pi=(\pi_1,\pi_2,\ldots,\pi_k),$ $\sum_{i=1}^k\pi_i=1,\pi_i\geq 0$
Likelihood (class conditional distribution : $p(x|y)=\mathcal{N}(x|\mu_y,\Sigma_y)$

Posterior:
$$P(y|x) = rac{P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}$$

Connection to Gaussian Naive Bayes

$$P(y|x) = rac{P(x|y)P(y)}{P(x)} = rac{P(x,y)}{\sum_z P(x,y)}$$

Prior:
$$P(y)$$
 $\pi=(\pi_1,\pi_2,\ldots,\pi_k),$ $\sum_{i=1}^k\pi_i=1,\pi_i\geq 0$
Likelihood (class conditional distribution : $p(x|y)=\mathcal{N}(x|\mu_y,\Sigma_y)$

Posterior:
$$P(y|x) = rac{P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}$$

What is the difference?

Density Estimation

Density Estimation Pipeline

- 1. Build probabilistic models Gaussian Mixture Models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

MLE of GMM

$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j) = \sum_{j=1}^m \log \left(\sum_{i=1}^k \pi_i \mathcal{N}(x_j | \mu_i, \Sigma_i) \right)$$

Want
$$rg\max_{ heta} \log L(heta)$$
 subject to $\sum_{j=1}^k \pi_j = 1$

MLE of GMM vs. MLE of Gaussian Naive Bayes

$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j) = \sum_{j=1}^m \log \left(\sum_{i=1}^k \pi_i \mathcal{N}(x_j | \mu_i, \Sigma_i)\right)$$
$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j, y_j) = \sum_{j=1}^m \log \pi_{y_j} + \log \mathcal{N}(x_j | \mu_{y_j}, \Sigma_{y_j}))$$

Want
$$rg\max_{ heta} \log L(heta)$$
 subject to $\sum_{j=1}^k \pi_j = 1$

Density Estimation

Density Estimation Pipeline

- Build probabilistic models Gaussian Mixture Models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Select Optimizer

Stochastic Gradient?

$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j) = \sum_{j=1}^m \log \left(\sum_{i=1}^k \pi_i \mathcal{N}(x_j | \mu_i, \Sigma_i) \right)$$

Plausible but tedious

$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j) = \sum_{j=1}^m \log \left(\sum_{i=1}^k \pi_i \mathcal{N}(x_j | \mu_i, \Sigma_i)\right)$$
$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j, y_j) = \sum_{j=1}^m \log \pi_{y_j} + \log \mathcal{N}(x_j | \mu_{y_j}, \Sigma_{y_j}))$$
$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^k \log p(x_j, y_j) = \sum_{j=1}^m \log \pi_{y_j} + \log \mathcal{N}(x_j | \mu_{y_j}, \Sigma_{y_j})$$

$$\log L(\theta) = \sum_{i=1}^{m} \sum_{j=1}^{k} y_j^i \log \pi_j - \sum_{i=1}^{m} \log Z - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{k} y_j^i (x^i - \mu_j)^\top \Sigma_j^{-1} (x^i - \mu_j)$$

$$\max_{\{\pi_i,\mu_i,\Sigma_i\}_{i=1}^k} \sum_{j=1}^m \log p(x_j,y_j) = \sum_{j=1}^m \log \pi_{y_j} + \log \mathcal{N}(x_j|\mu_{y_j},\Sigma_{y_j}) \big)$$

Want $\arg \max_{\theta} \log L(\theta)$ subject to $\sum_{j=1}^k \pi_j = 1$

$$\log L(\theta) = \sum_{i=1}^{m} \sum_{j=1}^{k} y_j^i \log \pi_j - \sum_{i=1}^{m} \log Z - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{k} y_j^i (x^i - \mu_j)^\top \Sigma_j^{-1} (x^i - \mu_j)$$

$$rac{\partial \log L}{\partial \mu_k} = -\sum_{i=1}^m y_k^i \Sigma_k^{-1} \left(x^i - \mu_k
ight) = 0$$

$$\mu_k = rac{\sum_{i=1}^m y_k^i x^i}{\sum_{i=1}^m y_k^i}$$

$$\log L(\theta) = \sum_{i=1}^{m} \sum_{j=1}^{k} y_{j}^{i} \log \pi_{j} - \sum_{i=1}^{m} \log Z - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{k} y_{j}^{i} (x^{i} - \mu_{j})^{\top} \Sigma_{j}^{-1} (x^{i} - \mu_{j})$$
$$\frac{\partial \log L}{\partial \mu_{k}} = -\sum_{i=1}^{m} y_{k}^{i} \Sigma_{k}^{-1} (x^{i} - \mu_{k}) = 0$$
$$\frac{\mu_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} x^{i}}{\sum_{i=1}^{m} y_{k}^{i}}}{\partial \Sigma_{k}^{-1}} = -\sum_{i=1}^{m} y_{k}^{i} \left[\frac{\partial \log Z_{k}}{\partial \Sigma_{k}^{-1}} - \frac{1}{2} (x^{i} - \mu_{k}) (x^{i} - \mu_{k})^{\top} \right] = 0$$
$$\frac{\pi_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i}}{m}}{\sum_{i=1}^{m} y_{k}^{i}}}$$
$$\Sigma_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} (x^{i} - \mu_{k}) (x^{i} - \mu_{k})^{\top}}{\sum_{i=1}^{m} y_{k}^{i}}}$$

How to get label? Guess by model

Gaussian Naive Bayes Prediction:

Compute the conditional probability by Bayes rule! $P(y|x) = rac{P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}$

$$y_j^l = \frac{\pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)}{\sum_{l=1}^k \pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)} \qquad l = 1, \dots, k$$

$$j = 1, \ldots, m$$

Expectation-Maximization

For t = 1.....

• E-Step: Guess sample labels based on current model

$$y_j^l = rac{\pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)}{\sum_{l=1}^k \pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)}$$

• M-Step: Update the parameters with current labels

$$\mu_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} x^{i}}{\sum_{i=1}^{m} y_{k}^{i}} \quad \pi_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i}}{m} \quad \Sigma_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} \left(x^{i} - \mu_{k}\right) \left(x^{i} - \mu_{k}\right)^{\top}}{\sum_{i=1}^{m} y_{k}^{i}}$$

Expectation-Maximization

For t = 1.....

• E-Step: Guess sample labels based on current model

$$y_j^l = rac{\pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)}{\sum_{l=1}^k \pi_l \mathcal{N}(x_j | \mu_l, \Sigma_l)}$$

• M-Step: Update the parameters with current labels

$$\mu_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} x^{i}}{\sum_{i=1}^{m} y_{k}^{i}} \quad \pi_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i}}{m} \quad \Sigma_{k} = \frac{\sum_{i=1}^{m} y_{k}^{i} \left(x^{i} - \mu_{k}\right) \left(x^{i} - \mu_{k}\right)^{\top}}{\sum_{i=1}^{m} y_{k}^{i}}$$

This procedure is actually optimizing an upper bound of MLE, therefore, it converges

Density Estimation: Gaussian Mixture Model

Density Estimation Pipeline

- 1. Build probabilistic models Gaussian Mixture Model
- 2. Derive loss function (by MLE or MAP....) MLE
- 3. Select optimizer

Summary

GMM is a special case of hidden variable model $P(x) = \sum_{y} P(x|y)P(y)$

Summary

GMM is a special case of hidden variable model $P(x) = \sum_{y} P(x|y)P(y)$ A way of maximizing likelihood function for hidden variable models. It can be broken up into two (easy) pieces:

- Estimate some "missing" or "unobserved" data from observed data and current parameters.
- Using this "complete" data, find the maximum likelihood parameter estimates.

Summary

GMM is a special case of hidden variable model $P(x) = \sum_{y} P(x|y)P(y)$ A way of maximizing likelihood function for hidden variable models. It can be broken up into two (easy) pieces:

- Estimate some "missing" or "unobserved" data from observed data and current parameters.
- Using this "complete" data, find the maximum likelihood parameter estimates.

EM can converge, but can also get stuck in local minima.

