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Supervised Learning vs. Unsupervised Learning

Training Data
Supervised {z*,y*}"*,

m
Unsupervised {xz i=1

| Learning Algorithm

Target Function

f: X—->Y

Density Estimation p(x)
f: X—>Y
Y €{0,1,...,k}

Clustering

Dimension f X =Y

Reduction

X eRP, Y cR?



Density Estimation




Density Estimation: Generative Models
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Clustering

4 Input Dataset

4 Output dataset I Cluster 1

I Cluster 2
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Clustering: Data Organization
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Dimension Reduction/Representation Learning

Repr. space R¥




Dimension Reduction/Representation Learning
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Density Estimation: Gaussian Mixture Mode|

N Target Function:
Training Data > Learning Algorithm > Distribution

{3372 i1 p(:B)

Density Estimation Pipeline

1. Build probabilistic models
Gaussian Mixture Model

2. Derive loss function (by MLE or MAP....)
MLE

3. Select optimizer
EM



Gaussian Mixture Model

Class mixture prior: P(g) = (m1, T2, ..., Tk), Zm =1,m >0

Class conditional distribution: p(zly) = N(z|py, Zy)

Marginal distribution: P(z) = ZP(m|y)P(y Zm (z|ps, X
Y



Expectation-Maximization

e E-Step: Guess sample labels based on current model

) = mN (|, 1)
TS mN (g, )

e M-Step: Update the parameters with current labels (Gaussian-Naive Bayes)
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This procedure is actually optimizing an upper bound of MLE, therefore, it converges




Density Estimation

Generative Models

z ~ p(x)




Clustering

4 nput Dataset 4 Output dataset I Cluster1
I Cluster 2
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e Assume the data {x(1),...,x™} lives in a Euclidean space, x(™ € R<.
e Assume the data belongs to K classes (patterns).

e How can we identify those classes (data points that belongs to each class)?



GMM for Clustering
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K-means algorithm (Lloyd, 1957)

e |Initialize k cluster centers, {¢!,¢?,...,c*}, randomly
e Do .
o (Assignment) Decide the cluster memberships of each data point, x* by
assigning it to the nearest cluster center

y' =arg min |[|z* — pu,l*.
j=1....k

o (Center Update) Adjust the cluster centers

1 7
Ki = 77 : L.
1. — .
v =, 2=
e While any cluster center has been changed



K-means for Clustering (Lloyd, 1957)




K-means for Clustering (Lloyd, 1957)




K-means for Clustering (Lloyd, 1957)
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K-means for Clustering (Lloyd, 1957)
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K-means for Clustering (Lloyd, 1957)
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K-means for Clustering (Lloyd, 1957)
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K-means vs. GMM

e Initialize k cluster centers, {c!,c?,...,c*}, randomly

Fort=1......
e Do )
o (Assignment) Decide the cluster memberships of each data point, z*, by e E-Step: Guess sample labels based on current model
assigning it to the nearest cluster center
_ , 0 1 mN (@, 5
. | = ©F
y* =arg min |z* — pu;|l° T T mN (e, B

gy

o Benfer Uistiats) Adjust the elustercenters e M-Step: Update the parameters with current labels (Gaussian-Naive Bayes)

Z o Y e i o Yk 5, — Sy (2f — ) (2% — p)

1
Ki = 77 0 He = —=m 5 ¢ = m :
! Hi:y* =3} ' D ¥k : m dic1 Yk

e While any cluster center has been changed

i yi=j

K-means can be understood as hard-GMM
GMM can be understood as soft k-means



K-means is Approximating Gaussian Mixture Model

N Target Function:
Training Data > Learning Algorithm > Distribution

{z:}iZ p(x)

Density Estimation Pipeline

1. Build probabilistic models
Gaussian Mixture Model with fixed covariance
2. Derive loss function (by MLE or MAP....)
Approximated MLE
3. Select optimizer
Coordinate Descent



K-means from MLE Perspective

e K-means Objective:

Find cluster centers pand assignments y to minimize the sum of squared distance of the
data points {x(™} to their assigned cluster centers

N K
min J min —X
AR {u} {y}) = Rue El kz 1:yk || 2 I

s.t. Zy(") = 1,Vn, where y(n) € {0,1},Vk,n

where y( n) _ 1 means that x( n) is assigned to cluster k ( With center Uk ) .
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Convergence of k-means

K-means Objective: - .

Find cluster centers yand assignments y to minimize the sum of squared distance of the

data points {x™} to their assigned cluster centers

N K
i = mi (n) ()12
min J ) =  min - x
(o3, Teh ) (u},{y};;yk e I

s.t. Zy,(c") = 1,Vn, where y,(cn) € {0,1},Vk,n J
k

1000

where y,(cn) = 1 means that x(n) is assigned to cluster k (with center Uk ) .

500

T

e Optimization method is a form of coordinate
descent (“block coordinate descent”)
o  Fix centers, optimize assignments (choose
cluster whose mean is closest)

o
w b
pes

o Fix assignments, optimize means (average of |
assigned datapoints)
e FEach iteration of K-means algorithm decrease the

objective

e Note: The algorithm usually converges to a local minima (though may not always, and it may
just convergence “somewhere”). Multiple runs with different initializations can be tried to find

a good solution.



Hyperparameters: Choosing K

e One way to select K for the K-means algorithm is to try different values of K,
plot the K-means objective versus K, and look at the "“elbow-point”.

“Qom

o

1000

K-means objective

Number of clusters

e Forthe above plot, K= 6 is the elbow-point.



Hyperparameter: Initialization

e The results of the K-means algorithm can vary based on initial placement of
centers.

o Some placements can in poor convergence rate, or convergence to sub-optimal clustering

— K-means can easily get stuck in local minima (of optimization landscape)

Convergence (to the wrong clustering) in one iteration



K-means Applications: Data Compression

K=2 K=3 K =10 Original image




Ambiguity in Clustering

What is consider similar/dissimilar?

Clustering is subjective
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Generalization of K-means

Given m data points, {x!,...,x™} € R"
Find k cluster centers, {p1,...,ux} € R"
And assign each data point i to one cluster, y'e{l,...,k}

Such that the sum of the squared distances from each data point to its
respective cluster center is minimized
m

min Y d(x", fiy:)-
wy



What similarity/dissimilarity function

e Desired properties of dissimilarity function
o Symmetry: d(x, y) = d(y, x)
B Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex."
o Positive separability: d(x, y) = 0, ifand only if x =y
B Otherwise there are objects that are different, but you cannot tell apart.
o Triangular inequality: d(x, y) < d(x, z) + d(z, y)

m Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but
Bob is very unlike Carl.



Distance functions for vectors

e Suppose two data points, both in R"™

= (21,To,...,Tn)"
Yy = (y17y27°"7yn)T

e FEuclidean distance: d(z,y) = /> 1 (zi — yi)?

e Minkowski distance: d(z,y) = i, |z: — yz-|p)%
o Euclidean distance: p = 2
o Manhattan distance: p =1,d(z,y) = Z?:l |z — i
o "inf"-distance: p = oo,d(z,y) = max?_, |z; — yi|



Distance example
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Euclidian distance: V42 +32 =75

>

Manhattan distance: 4 +3 =7

“inf’-distance: max{4,3} = 4



Hamming distance

e Manhattan distance is also called Hamming distance when all features are
binary
o Count the number of difference between two binary vectors
o Example, z,y € {0,1}'7

1 2 3|4/ 5|6/7 8 91d |11 12 13 14 15 }6] 17
x 01 110401140 O 1f0OJj0y 1 1 1 0 j0]1
y O1 141HOJOfO0 O 111y 1 1 1 O 1|1

d(x,y) =5



Edit distance

e Transform one of the objects into the other, and measure how much effort it

takes
x INTE+«*xNTION
NN
y *x EXECUTION
ds s is
d: deletion (cost 5) d(x,y) =5x14+3x14+1x2=10

s: substitution (cost 1)
i: insertion (cost 2)



Generalized K-means algorithm

e |Initialize k cluster centers, {¢!,¢?,...,c*}, randomly
e Do .
o (Assignment) Decide the cluster memberships of each data point, x* by
assigning it to the nearest cluster center

y* =arg min d(z’, ;).
j=1,....k

o (Center Update) Adjust the cluster centers ST [EUellE el eTe:

. | Z.
u; = arg min d(xz{ YT R =) ;f

veER™ .
1. Y=y
e While any cluster center has been changed




: : Generalized
Generalized K-means algorithm ‘ Mixture Models

e |Initialize k cluster centers, {¢!,¢?,...,c*}, randomly
e Do .
o (Assignment) Decide the cluster memberships of each data point, x* by
assigning it to the nearest cluster center

y* =arg min d(z’, ;).
j=1,...,k

o (Center Update) Adjust the cluster centers ST [EUellE el eTe:

. 1 :
u; = arg min d(mzﬁﬁ YT R =) ;Jw

veER™ .
1. Y=y
e While any cluster center has been changed
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e Agglomerative (bottom-up) Clustering
1. Start with each example in its own singleton cluster
2. At each time-step, greedily merge 2 most similar clusters
3. Stop when there is a single cluster of all examples, else go to 2.
e Divisive (top-down) Clustering
1. Start with all examples in the same cluster
2. At each time-step, remove the “outsiders” from the least cohesive cluster
3. Stop when each example is in its own singleton cluster, else go to 2



Bottom up hierarchical clustering

e Assign each data point to its own cluster:

g1 = {$1}7g2 = {562}7 ey m = {mm}aand let G = {917927 s 7gm}

D(g'iy gj) = minwegi,yegj d(xa y)

e Do
o Find two clusters to merge: ,j = argmin;<; ;<|q| D(gi,—gjj/
o Merge the two clusters to a new cluster: g <— @i U G5 Y eep trackof
o Remove the merged clusters: G « G\ g;, G+« G\g; telations
o Addthe new cluster: G« G U {g} > (9
)@ @

e While |G|>1
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d(l,z),3 =min{d, 3 ’dz,s} =min{6,3} =3

d,,,=mn{d ,.d,, }=min{l09}=9
d, s =min{d,.d, ;}=min{98}=8
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