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Density Estimation: Generative Models



Clustering



Clustering: Data Organization



Dimension Reduction/Representation Learning



Dimension Reduction/Representation Learning



Density Estimation: Gaussian Mixture Model

Training Data
Target Function:
DistributionLearning Algorithm

Density Estimation Pipeline

1. Build probabilistic models
Gaussian Mixture Model 

2. Derive loss function (by MLE or MAP….)
MLE

3. Select optimizer
EM 



Gaussian Mixture Model

Class mixture prior:

Class conditional distribution: 

Marginal distribution:



Expectation-Maximization

For t = 1……

● E-Step: Guess sample labels based on current model

● M-Step: Update the parameters with current labels (Gaussian-Naive Bayes)

This procedure is actually optimizing an upper bound of MLE, therefore, it converges



Density Estimation

Generative Models



Clustering

● Assume the data                             lives in a Euclidean space,
● Assume the data belongs to K classes (patterns).
● How can we identify those classes (data points that belongs to each class)?



GMM for Clustering



K-means algorithm (Lloyd, 1957)

● Initialize k cluster centers,                    , randomly
● Do

○ (Assignment) Decide the cluster memberships of each data point,     , by 
assigning it to the nearest cluster center

○ (Center Update) Adjust the cluster centers

● While any cluster center has been changed



K-means for Clustering (Lloyd, 1957)
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K-means for Clustering (Lloyd, 1957)



K-means for Clustering (Lloyd, 1957)



K-means for Clustering (Lloyd, 1957)



K-means vs. GMM

K-means can be understood as hard-GMM
GMM can be understood as soft k-means



K-means is Approximating Gaussian Mixture Model

Training Data
Target Function:
DistributionLearning Algorithm

Density Estimation Pipeline

1. Build probabilistic models
Gaussian Mixture Model with fixed covariance

2. Derive loss function (by MLE or MAP….)
Approximated MLE

3. Select optimizer
Coordinate Descent 



● K-means Objective:

Find cluster centers    and assignments y to minimize the sum of squared distance of the 
data points            to their assigned cluster centers

where                   means that            is assigned to cluster k ( with center       ) .

                             subject to 

K-means from MLE Perspective



Convergence of k-means

● Note: The algorithm usually converges to a local minima (though may not always, and it may 
just convergence “somewhere”). Multiple runs with different initializations can be tried to find 
a good solution.

● Optimization method is a form of coordinate 
descent (“block coordinate descent”)

○ Fix centers, optimize assignments (choose 
cluster whose mean is closest)

○ Fix assignments, optimize means (average of 
assigned datapoints)

● Each iteration of K-means algorithm decrease the 
objective



Hyperparameters: Choosing K

● One way to select K for the K-means algorithm is to try different values of K, 
plot the K-means objective versus K, and look at the “elbow-point”.

● For the above plot, K= 6 is the elbow-point.



Hyperparameter: Initialization

● The results of the K-means algorithm can vary based on initial placement of 
centers.

○ Some placements can in poor convergence rate, or convergence to sub-optimal clustering  
→ K-means can easily get stuck in local minima (of optimization landscape)

Convergence (to the wrong clustering) in one iteration



K-means Applications: Data Compression



Ambiguity in Clustering



Generalization of K-means

● Given m data points, 
● Find k cluster centers, 
● And assign each data point i to one cluster,
● Such that the sum of the squared distances from each data point to its 

respective cluster center is minimized

 



What similarity/dissimilarity function

● Desired properties of dissimilarity function
○ Symmetry: d(x, y) = d(y, x)

■ Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex."

○ Positive separability: d(x, y) = 0, if and only if x = y

■ Otherwise there are objects that are different, but you cannot tell apart.

○ Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y)
■ Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but 

Bob is very unlike Carl.



Distance functions for vectors

● Suppose two data points, both in 

● Euclidean distance: 
● Minkowski distance:

○ Euclidean distance: 
○ Manhattan distance: 
○ “inf”-distance:



Distance example



Hamming distance

● Manhattan distance is also called Hamming distance when all features are 
binary
○ Count the number of difference between two binary vectors
○ Example, 



Edit distance

● Transform one of the objects into the other, and measure how much effort it 
takes



Generalized K-means algorithm

● Initialize k cluster centers,                    , randomly
● Do

○ (Assignment) Decide the cluster memberships of each data point,     , by 
assigning it to the nearest cluster center

○ (Center Update) Adjust the cluster centers

● While any cluster center has been changed

Squared Euclidean distance:



Generalized K-means algorithm

● Initialize k cluster centers,                    , randomly
● Do

○ (Assignment) Decide the cluster memberships of each data point,     , by 
assigning it to the nearest cluster center

○ (Center Update) Adjust the cluster centers

● While any cluster center has been changed

Squared Euclidean distance:

Generalized 
Mixture Models



Hierarchical Clustering

● Agglomerative (bottom-up) Clustering
1. Start with each example in its own singleton cluster
2. At each time-step, greedily merge 2 most similar clusters
3. Stop when there is a single cluster of all examples, else go to 2.

● Divisive (top-down) Clustering 
1. Start with all examples in the same cluster
2. At each time-step, remove the “outsiders” from the least cohesive cluster
3. Stop when each example is in its own singleton cluster, else go to 2



Bottom up hierarchical clustering

● Assign each data point to its own cluster:

● Do
○ Find two clusters to merge:
○ Merge the two clusters to a new cluster:
○ Remove the merged clusters:
○ Add the new cluster:

● While 
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