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Basic / Prerequisites

Probability

e distributions, densities, marginalization, conditioning

Statistics
® mean, variance, maximum likelihood estimation

Linear Algebra and Optimization
* vector, matrix, multiplication, inversion, eigen-value decomposition

Coding skills



Machine Learning for Apartment Hunting

e Suppose you are to move to Atlanta

e And you want to find the most
reasonably priced apartment

satisfying your needs:
monthly rent = 6, (living area) + 05(# bedroom)

Living area (ft?)

# bedroom

Monthly rent ($)

230

1
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506
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433
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800
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270




Linear Regression Model

o Assume y is a linear function of x (features) plus noise €
monthly rent = 0, (living area) + 65(# bedroom)

y =0p+60:x;1++0,x, +€

where ¢ is an error model as Gaussian N (0, 02) €|

Probability

o Let 8 = (6,04, ...,6,,)7, and augment data by one

dimension

Linear algebra

x < (1,x)7

Theny =0Tx+e¢ \

Linear algebra

e

0o




Probabilistic Interpretation

» Assume y is a linear in x plus noise € v
y =0Tx+e€

» Assume ¢ follows a Gaussian N(0, a)

o 1 i _ T i)
p(¥[x';0) = —=—exp (— b -0 x) )
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» By independence assumption, likelihood
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Probabilistic Interpretation

» Hence the log-likelihood is:

m
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Statistics
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LMS: —Ei(y 6T xt)

* Least Mean Square (LMS)

» How to make it work in real data? | Algorithms
Programming




Revisit of Linear Algebra

Basics

Dot and Vector Products

ldentity, Diagonal and Orthogonal Matrices
Trace

Norms

Inverse of a matrix

Eigenvalues and Eigenvectors

Singular Value Decomposition

Matrix Calculus



Linear Algebra Basics - |

e Linear algebra provides a way of compactly representing and operating

on sets of linear equations
4x, — 5x, = —13 —2x,+3x, =9
can be written in the form of Ax = b

4 51, [-13
A_[_z 3]b_[ 9 ]

e A € R™™ denotes a matrix with m rows and n columns, where elements
belong to real numbers.

e x € R™ denotes a vector with n real entries. By convention an n
dimensional vector is often thought as a matrix with n rows and 1 column.



Linear Algebra Basics - |l

Transpose of a matrix results from flipping the rows and columns. Given
A € R™*" transpose is AT € R™*™

For each element of the matrix, the transpose can be written as A" ;; = Aj;

The following properties of the transposes are easily verified

(AT)T =4

(AB)T = BTAT

(A+B)T =A" + BT

A square matrix A € R™" is symmetric if A = AT and it is anti-symmetric if

A = —AT". Thus each matrix can be written as a sum of symmetric and anti-
symmetric matrices. C=(C+CT)+ (€ ~CT)



Vector and Matrix Multiplication - |

The product of two matrices A € R™*™ and B € R™*P is given by C €
RmXp’ where CU — ZZ=1AikBkj

Given two vectors x,y € R?, the term x "y (also x - y ) is called the inner
product or dot product of the vectors, and is a real number given by
*1x;y;. For example,

Y1 3
xTy=1[x1 X2 X3]|¥2 =2 XiYi
Y3 i=1

Given two vectors x € R,y € R™, the term xy " is called the outer

: . T
product of the vectors, and is a matrix given by (xl-yj) = x;y;. For
example,



Vector and Matrix Multiplication - I

T —

Xy =

X1 X1Y1 X1Y2 X1)Y3
X2|[V1 Y2 V3] =|X2V1 X2Y2 X2)3
X3 X3Y1 X3Y2 X33

e The dot product also has a geometrical interpretation, for vectors in x,y €

R? with angle 8 between them

7 3

x-y = |x||y| cosb

oL —

which leads to use of dot product for testing orthogonality, getting the Euclidean
norm of a vector, and scalar projections.




Norms - |

e Norm of a vector ||x]|| is informally a measure of the "length" of a vector
e More formally, a norm is any function f: R™ — R that satisfies

= Forallx € R, f(x) = 0 (hon-negativity)

= f(x) =0isandonlyif x = 0 (definiteness)

» Forx e R%,t €N, f(tx) = |t|f(x) (homogeneity)

» Forallx,y e R%, f(x+y) < f(x)+ f(y) (triangle inequality)



Norms - ||

e Common norms used in machine learning are

= £, norm: |[x]|; = ,/ . xlz

= ¢y norm: ||x|ly = Xz Ix]
= £, norm: ||x]|e = max;|x;]|

e All norms presented so far are examples of the family of £,, norms, which are
parameterized by a real number p > 1:

1
Ixll, = Eizy lx; PP

e Norms can be defined for matrices, such as the Frobenius norm.

1Al = J2ﬁ12?=1A%j = Ja@ A)




Trace of a Matrix

e The trace of a matrix A € R™*", denoted as tr(4), is the sum of the diagonal
elements in the matrix

tr(A) = ?=1 Aii

e The trace has the following properties
= ForAd € R™™" tr(4) =trd"’
» ForA,B € R tr(A+ B) = tr(4) + tr(B)
» ForAe R™™te R, tr(td) =t - tr(4)

= For A, B, C such that ABC is a square matrix tr(ABC) = tr(BCA) =
tr(CAB)

e The trace of a matrix helps us easily compute norms and eigenvalues of
matrices as we will see later



ldentity, Diagonal and Orthogonal Matrices

The identity matrix, denoted by I € R™ " is a square matrix with ones on the
diagonal and zeros everywhere else

A diagonal matrix is matrix where all non-diagonal matrices are 0 . This is
typically denoted as D = diag(d,,d,, ds, ..., d,,)

Two vectors x,y € R™ are orthogonal if x.y = 0. A square matrix U € R™" is
orthogonal if all its columns are orthogonal to each other and are normalized

It follows from orthogonality and normality that
= U'U=1=U0U0"
= |IUx]l2 = lIxl2



Inverse of a Matrix

The inverse of a square matrix A € R™" is denoted A™1 and is the unique
matrix such that A71A =1 = AA™?!

For some square matrices A~ may not exist, and we say that 4 is singular or
non-invertible. In order for A to have an inverse, A must be full rank.

For non-square matrices the inverse, denoted by A*,is given by A* =
(ATA)™1 AT called the pseudo inverse



Eigenvalues and Eigenvectors - |

e Given a square matrix A € R™"™ we say that 4 € C is an eigenvalue of A and
x € C" is an eigenvector if

Ax =Ax,x # 0
e Intuitively this means that upon multiplying the matrix A with a vector x , we
get the same vector, but scaled by a parameter 1

e Geometrically, we are transforming the matrix A from its original orthonormal
basis/co-ordinates to a new set of orthonormal basis x with magnitude as 2



Eigenvalues and Eigenvectors - |l

e All the eigenvectors can be written together as AX = XA where the diagonals
of X are the eigenvectors of 4, and A is a diagonal matrix whose elements are
eigenvalues of A

e If the eigenvectors of A are invertible, then A = XAX ™1

e There are several properties of eigenvalues and eigenvectors
= Tr(4) = ¥is 4
= Al =Tz A
= Rank of 4 is the number of non-zero eigenvalues of A

1

= |f Ais non-singular then y
L

are the eigenvalues of A™1

= The eigenvalues of a diagonal matrix are the diagonal elements of the
matrix itself!



Eigenvalues and Eigenvectors - Il

For a symmetric matrix A, it can be shown that eigenvalues are real and the
eigenvectors are orthonormal. Thus it can be represented as UAU T

Considering quadratic form of A,
xTAx =xTUANUTx =yTAy =Y, 4;y7 (wherey=UTx)

Since y# is always positive the sign of the expression always depends on A;. If
A; > 0 then the matrix A is positive definite, if ; = 0 then the matrix A is

positive semidefinite



Singular Value Decomposition

e Singular value decomposition, known as SVD, is a factorization of a real matrix

with applications in calculating pseudo-inverse, rank, solving linear equations,
and many others.

e Foramatrix M € R™" gssumen <m
» M=UXVT where U € R™™M T € R**" ¥ € RM*"

= The m columns of U, and the n columns of V are called the left and

right singular vectors of M. The diagonal elements of X, X;; are known
as the singular values of M.

» |etvbetheit" column of V, and u be the ith column of U, and ¢ be
the ith diagonal element of X

Mv =ocuand MTu = ov



Singular Value Decomposition - |l

e Singular value decomposition is related to eigenvalue decomposition

= Suppose X =[¥1—U Xz —U.. Xy —U]ER™"
» Then covariance matrix is C = %XXT

» Starting from singular vector pair

e Mu=ov
= MMTu = cMv
= MMTu = ¢?%u
= Cu = Au



Matrix Calculus

e Foravectorx,b € R", let f(x) =b"x, thenV,bTx is equal to b

of(x) _ 0
oxy - oxy

n s
i=1bix; = by

e Now for a quadratic function, f(x) = xTAx, with A € S, a;:ic) = 2Ax

6f(x)= 3} n
= oxk dxy, <=1

= Yizk AieXi + Djzx ArjXj + 2AxX
= 2201 Ari%i

n
i=1 AijXiX;

o letf(X)=X"1 theno(X 1) =—-X"1(0Xx)X1?



References for self study

Resources for review of material

- Linear Algebra Review and Reference by Zico Kotler
- Matrix Cookbook by KB Peterson



https://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Back to Apartment Hunting
» Given m data points, find 6 that minimizes the mean square error

~ 1 . .
0 = argming L(6) = EZ(y‘ - BTx‘)Z
g

i\
Optimization -
» Set gradient to 0 and find parameter Statistics
imizati dL(o
Optimization ( )= __Z(y —0Txi)xi = 0

_ «:——Zy"xi+—2x"x”9=0
Linear m & m &
algebra N N
Statistics Statistics




Optimization for LMS

o Definex = (x%,x2,..x™),y = (y,5%..,y™T, gradient becomes

Linear d0L(0) 2 2
algebral| > a8 - XY +;XXT9
. Algorithms
Linear =0 =XX)"Xy Programming

algebra . ) /

» Matrix inversion in = (XX")71Xy expensive to compute

o Gradient descent

Ot+1  ft 4 _Z etT '
\ Optimization




Registration

e Friday is the registration deadline.

e If you decide to drop the course, please do so ASAP so that other people on
the waitlist have time to register!

e See you next week!



Q&A



