

CS4641 Spring 2025 Generative LLM (Part II): Post-Training

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

```
(Large) Language Models
```


Unlabelled Data: text sequences

LLM Training

LLM Training

LLM Training

Pretraining of (Large) Language Models

- Build probabilistic models
 Categorical Distribution + Autoregressive + RNN/Transformer
- 2. Derive loss function (by MLE or MAP....) MLE
- 3. Select optimizer

Stochastic Gradient Descent

(Large) Language Models

$$p(X) = p(\{x_j\}_{j=1}^t)$$

= $\prod_{j=1}^t p(x_j | x_{< j})$
= $\prod_{j=1}^t \frac{\exp(W_{x_j}\phi(x_{< j}))}{\sum_{l=1}^V \exp(W_l\phi(x_{< j}))}$

Recursive Neural Network in (Large) Language Models

$$p(X) = p(\{x_j\}_{j=1}^t) \qquad O(|V|^T)$$

= $\prod_{j=1}^t p(x_j | x_{< j})$
= $\prod_{j=1}^t \frac{\exp(W_{x_j}\phi(x_{< j}))}{\sum_{l=1}^V \exp(W_l\phi(x_{< j}))}$ RNN

https://lena-voita.github.io/nlp_course/language_modeling.html

Bottleneck in RNN

$$h_j = \phi(x_{< j})$$
$$\frac{\exp(W_{x_j}\phi(x_{< j}))}{\sum_{l=1}^V \exp(W_l\phi(x_{< j}))}$$

. /

Sequences bottlenecked through a fixed-sized vector.

Parallel Attention

Query: $\mathbf{q}_{:j} = \mathbf{W}_Q \, \mathbf{x}_j$ Key: $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i$,Value: $\mathbf{v}_{:i} = \mathbf{W}_V \mathbf{h}_i$.Weights: $\alpha_{:j} = \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m$.Context vector: $\mathbf{c}_j = \alpha_{1j} \mathbf{v}_{:1} + \dots + \alpha_{mj} \mathbf{v}_{:m}$.

Transformer: Multi-Headed Multi-Layer Parallel Attention!

Decoder-Only Transformer

What we have:

$$p(X) = p(\{x_j\}_{j=1}^t) = \prod_{j=1}^t p(x_j | x_{< j})$$

Generating texts unconditionally

What we have:

$$p(X) = p(\{x_j\}_{j=1}^t) = \prod_{j=1}^t p(x_j | x_{< j})$$

Generating texts unconditionally

Answer Question? Generating texts condition on answer

What we have:

$$p(X) = p(\{x_j\}_{j=1}^t) = \prod_{j=1}^t p(x_j | x_{< j})$$

Generating texts unconditionally

Answer Question? Generating texts condition on answer

$$p(Y|X) = \prod_{l=1}^{L} p(y_l \mid y_{< l}, X)$$

What we have:

$$p(X) = p(\{x_j\}_{j=1}^t) = \prod_{j=1}^t p(x_j | x_{< j})$$

Generating texts unconditionally

Answer Question? Generating texts condition on answer

$$p(Y|X) = \prod_{l=1}^{L} p(y_l \mid y_{< l}, X) \quad \text{Never be trained}$$

MATH Dataset (Ours) Problem: Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose? Solution: There are two cases here: either Tom chooses two vellow marbles (1 result), or he chooses two marbles of different colors $\binom{4}{2} = 6$ results). The total number of distinct pairs of marbles Tom can choose is 1+6=7**Problem:** If $\sum_{n=0}^{\infty} \cos^{2n} \theta = 5$, what is $\cos 2\theta$? **Solution:** This geometric series is $1 + \cos^2 \theta + \cos^4 \theta + \cdots = \frac{1}{1 - \cos^2 \theta} = 5$. Hence, $\cos^2 \theta = \frac{4}{5}$. Then $\cos 2\theta = 2\cos^2 \theta - 1 =$ **Problem:** The equation $x^2 + 2x = i$ has two complex solutions. Determine the product of their real parts. Solution: Complete the square by adding 1 to each side. Then $(x+1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$, so $x+1 = \pm e^{\frac{i\pi}{8}}\sqrt{2}$. The desired product is then $\left(-1 + \cos\left(\frac{\pi}{2}\right)\sqrt[4]{2}\right) \left(-1 - \cos\left(\frac{\pi}{2}\right)\sqrt[4]{2}\right) =$ $1 - \cos^2\left(\frac{\pi}{8}\right)\sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2}\sqrt{2} =$

Natural language infe (7 datasets)	erence Commons (4 datas	ense Sentim (4 datas	ent sets) (4 datas	closed-book QA (3 datasets)	Struct to text (4 datasets)	Translation (8 datasets)
(ANLI (R1-R3)) R1	TE CoPA		B MRP	C (ARC (easy/chal.)	(CommonGen)	(ParaCrawl EN/DE)
CB SN	ILI (HellaSv	vag) Sent1	40 QQF		DART	ParaCrawl EN/ES
(MNLI) (WN	NLI PiQA	SST-	2 PAW	S TQA	E2ENLG	(ParaCrawl EN/FR)
QNLI	StoryCle	oze) (Yelp	STS-	в	WEBNLG	(WMT-16 EN/CS)
						WMT-18 EN/DE
Reading comp. (5 datasets)	Read. comp. w/	Coreference (3 datasets)	(7 datasets)	Summariza (11 datas	ation ets)	(WMT-16 EN/FI)
(BoolQ)(OBQA)	(2 datasets)	DPR	(COQA)(TREC)	(AESLC) (Multi-Ne	ws) SamSum)	WMT-16 EN/RO
DROP (SQUAD)	(CosmosQA)	Winogrande	QUAC CoLA	AG News Newsro	om Wiki Lingua EN	(WMT-16 EN/RU)
MultiRC	ReCoRD	WSC273	(WIC) (Math Fix Punctuation (NLG)	CNN-DM Opin-Abs: ID Gigaword Opin-Abs: N	ebate) (<u>XSum</u>) Iovie)	WMT-16 EN/TR

Figure 3: Datasets and task clusters used in this paper (NLU tasks in blue; NLG tasks in teal).

- Build probabilistic models
 Fixed the same as in pretraining:
 Categorical Distribution + Autoregressive + RNN/Transformer
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Transformer: Multi-Headed Multi-Layer Parallel Attention!

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....) MLE
- 3. Select optimizer

MLE for Supervised Fine-tuning (SFT)

• Given all input data $D = \{X^i, Y^i\}_{i=1}^n$, $X^i = \{x^i_j\}_{j=1}^t$, $Y^i = \{y^i_l\}_{l=1}^L$

$$p(Y \mid X) = \prod_{l=1}^{L} p(y_l \mid y_{< l}, X)$$

• Log-likelihood

$$\begin{split} \ell(\phi) &= \sum_{i=1}^{n} p(Y^{i} \mid X^{i}; \phi) = \sum_{i=1}^{n} \sum_{l=1}^{L} \log \left(y_{l}^{i} \mid y_{< l}^{i}, X^{i}; \phi \right) \\ &= \sum_{i=1}^{n} \sum_{l=1}^{L} \log \frac{\exp \left(W_{y_{l}^{i}} \phi \left(y_{< l}^{i} \mid X^{i} \right) \right)}{\sum_{v=1}^{V} \exp \left(W_{v} \phi \left(y_{< l}^{i} \mid X^{i} \right) \right)} \\ &= \sum_{i=1}^{n} \sum_{l=1}^{L} W_{y_{l}^{i}} \phi \left(y_{< l}^{i} \mid X^{i} \right) - \sum_{i=1}^{n} \sum_{j=1}^{L} \log \sum_{v=1}^{V} \exp \left(W_{v} \phi \left(y_{< l}^{i} \mid X^{i} \right) \right) \end{split}$$

Figure 5: Scaling trends of models performance (\$7.1) as a function of (a) the number of training tasks; (b) the number of instances per training task; (c) model sizes. *x*-axes are in log scale. The **linear growth of model performance with exponential increase in observed tasks and model size** is a promising trend. Evidently, the performance gain from more instances is limited.

Wang, Yizhong, et al. "Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks." *arXiv* preprint arXiv:2204.07705 (2022).

RLHF for (Large) Language Models

Preference Data: Prompt & Positive/ Negative Answers

RLHF for (Large) Language Models

- Build probabilistic models
 Fixed the same as in pretraining:
 Categorical Distribution + Autoregressive + RNN/Transformer
 - + classification head (only for learning)
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Transformer: Multi-Headed Multi-Layer Parallel Attention!

RLHF for (Large) Language Models

RLHF for (Large) Language Models

RLHF for (Large) Language Models

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....) MLE
- 3. Select optimizer

MLE for Preference Learning -Direct Preference Optimization (DPO)

- Given all input data $D = \{X^i, Y^{i,+}, Y^{i,-}\}_{i=1}^n$ $\{X^i, Z^{i,1}, Z^{i,2}, y^i\}_{i=1}^n$ \longrightarrow $p(Z^1 \succ Z^2 | X) = \sigma \left(\log \frac{p(Z^1 | x)}{p_{ref}(Z^1 | x)} - \log \frac{p(Z^2 | x)}{p_{ref}(Z^2 | x)}\right)$
- Log-likelihood

$$\ell(\phi) = \sum_{i=1}^{n} y^{i} \log p(Z^{i,1} \succ Z^{i,2} \mid X^{i}; \phi)$$

= $\sum_{i=1}^{n} \log \sigma \left(\log \frac{p_{\phi} \left(Y^{i,+} \mid X^{i} \right)}{p_{\text{ref}} \left(Y^{i,+} \mid X^{i} \right)} - \log \frac{p_{\phi} \left(Y^{i,-} \mid X^{i} \right)}{p_{\text{ref}} \left(Y^{i,-} \mid X^{i} \right)} \right)$

Online vs. Offline Samples

$$\ell(\phi) = \sum_{i=1}^{n} y^{i} \log p(Z^{i,1} \succ Z^{i,2} \mid X^{i}; \phi)$$

= $\sum_{i=1}^{n} \log \sigma \left(\log \frac{p_{\phi}(Y^{i,+} \mid X^{i})}{p_{\text{ref}}(Y^{i,+} \mid X^{i})} - \log \frac{p_{\phi}(Y^{i,-} \mid X^{i})}{p_{\text{ref}}(Y^{i,-} \mid X^{i})} \right)$

Where the samples Y comes from?

RLHF for (Large) Language Models

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Stochastic Gradient Descent

Proximal Policy Optimization (PPO) vs. DPO

1, Learn a reward model

$$\log\left(\theta\right) = -\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l)\sim D}\left[\log\left(\sigma\left(r_\theta\left(x,y_w\right) - r_\theta\left(x,y_l\right)\right)\right)\right]$$

2, Policy Gradient

$$\max_{p(Y|X)} \sum_{X \sim D} \left(\mathbb{E}_{p(Y|X)}[r(X,Y)] - \lambda KL(p(Y|X)||p_{\text{ref}}(Y|X)) \right)$$

Proximal Policy Optimization (PPO) vs. DPO

1, Learn a reward model

$$E_{(x,y_w,y_l)\sim D}\left[\log\left(\sigma\left(r_\theta\left(x,y_w\right)-r_\theta\left(x,y_l\right)\right)\right)\right]$$

2, Policy Gradient

$$\max_{p(Y|X)} \sum_{X \sim D} \left(\mathbb{E}_{p(Y|X)}[r(X,Y)] - \lambda KL(p(Y|X)||p_{\text{ref}}(Y|X)) \right)$$

Naturally Online!

RLHF Performance

Stiennon, Nisan, et al. "Learning to summarize with human feedback." *Advances in neural information processing systems* 33 (2020): 3008-3021.

Summary

- Pretraining of LLM is not enough
- Post-training of LLM is necessary:
 - Supervised Fine-tuning
 - Reinforcement Learning from Human Feedback
 - Online vs Offline data

Supervised Learning vs. Unsupervised Learning

Supervised Learning vs. Unsupervised Learning

Thanks for Attending in the whole semester