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Syllabus

Cover a number of most commonly used machine learning algorithms in
sufficient amount of details on their mechanisms.

Organization

e Background knowledge
o Linear Algebra, Probability and Statistics, Optimization
e Supervised learning
o Learning with labels
e Unsupervised learning
o Learning without labels
e Advanced Topics
o Foundation Models / Large Language Models



Grading

Homework (30%)
Project (40%)

Exam (30%)
Participation bonus (5%)



Homework

e There will be three assignments, each account for 10% towards your final
score.

e Late policy: Assignments are due at 11:59PM of the due date. You will be
allowed 2 total late days (48 hours) without penalty for the entire semester
(for homework only, not applicable to exams or projects). Once those days
are used, you will be penalized according to the following policy:

o Homework is worth full credit before the due time.
o Itis worth 75% credit for the next 24 hours.

o lItis worth 50% credit for the second next 24 hours.
o It is worth zero credit after that.



Homework

You are required to use Latex (OverlLeaf Latex Example in the Video), or a

word processing software to generate your solutions to the written
questions.

Handwritten solutions WILL NOT BE ACCEPTED. You can easily export your

Jupyter Notebook to a Python file and import that to your desired python
IDE to debug your code for assignments.


https://www.overleaf.com/read/fnpmvchnfqmp

Project

Team Size

Each project must be completed in a team of 3-5. Once you have formed your
group, please send one email per team to the class instructor list with the names
of all team members. If you have trouble forming a group, please send us an
email and we will help you find project partners.

The team formation email will be due at 11:59 PM on Feb 10th.



Project

Project Topics:

e Reproduce classic papers, include but not limited to:
o  Deep Residual Learning for Image Recognition
Auto-Encoding Variational Bayes.
A Simple Framework for Contrastive Learning of Visual Representations.

Sequence to Sequence Learning with Neural Networks
etc

e You may also refer to the https://cs231n.stanford.edu/project.html.

o O O O



https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1409.3215
http://cs229.stanford.edu/projects2012.html

Project

Deliverables:

m Presentation (15%)
m  Final Report (25%): All write-ups should use the NeurlIPS style.

Your final report is expected to be 5 pages excluding references. It should have roughly the following format:

e Introduction: problem definition and motivation

e Background & Related Work: background info and literature survey (optional)

e  Methods — Overview of your proposed method — Intuition on why should it be better than the state of
the art — Details of models and algorithms that you developed

e  Experiments — Description of your testbed and a list of questions your experiments are designed to
answer — Details of the experiments and results

e  Conclusion: discussion and future work

The project final report will be due at 11:59 PM on April 28th


https://nips.cc/Conferences/2020/PaperInformation/StyleFiles

Project

Criteria:
o 30% for proposed method (soundness-ane-eriginatity)
o 30% for correctness, completeness, and difficulty of experiments and figures
o 20% for empiricat-anec-theoretieat analysis of results and methods
o 20% for quality of writing (clarity, organization, flow, etc.)



Exam

One exam will be held on March 12 in lieu of the regular class:

It will be a closed-book exam, so no notes or communication with peers is allowed.
There will be no make-up exams, so be sure to attend on the scheduled date. Missing the exam will
result in zero credit.

e It will only cover the content introduced before March 12.



Participation Bonus

We will be awarding, on a case-by-case basis, up to 5% in extra credit to the top Ed contributors based on the
number of (meaningful) instructor-endorsed answers or other significant contributions that assist the teaching

staff or other students in the course.

The most helpful contributor will receive the greatest amount of extra credit, and other students with significant

contributions will receive a percentage of that.



Probability and Statistics
Revist



Basic Probability Concepts

e Asample space S is the set of all possible outcomes of a conceptual or physical,
repeatable experiment. (S can be finite or infinite.)

= E.g., S may be the set of all possible outcomes of a dice roll: S
1 2 3 4 5 6)

= E.g. S may be the set of all possible nucleotides of a DNA site: S §
A C G T

= E.g., S may be the set of all possible time-space positions of an aircraft on a
radar screen.

e An Event A is any subset of §

= Seeing "1" or "6" in a dice roll; observing a "G" at a site; UAOO7 in space-
time interval



Discrete Probability Distribution

e A probability distribution P defined on a discrete sample space S is an assignment of
a non-negative real number P(s) to each sample s € S :

* Probability Mass Function (PMF): p,.(x;) = P[X = x;]
» Properties: p,(x;) = 0 and };px(x;) =1
e Examples:

=  Bernoulli Distribution:

{1—p for x =0

D for =1 outcome of a coin

=  Binomial Distribution:

P(X = k) = () p(1 - p)"*



Continuous Probability Distribution

e A continuous random variable X is defined on a continuous sample space: an interval

on the real line, a region in a high dimensional space, etc.

It is meaningless to talk about the probability of the random variable
assuming a particular value --- P(x) = 0

Instead, we talk about the probability of the random variable assuming a
value within a given interval, half interval, or arbitrary Boolean combination of
basic propositions.

Cumulative Distribution Function (CDF): E.(x) = P[X < x]

Probability Density Function (PDF): E.(x) = f f(x)dx or fo(x) = de(x)

Properties: f,(x) = 0 and [ wfx(x)dx =1

Interpretation: f,(x) = [X € xxM]



Continuous Probability Distribution
e Examples:

» Uniform Density Function:

1
e <x<
[ ={p—q Tresx=?t

0 otherwise

= Exponential Density Function:

fo(z) =Ae™ e forx 20

Fo(z)=1—e> forx >0

»= Gaussian(Normal) Density Function

(x—p)*

e 202

fx(x) =

21O



Continuous Probability Distribution

e Gaussian Distribution:

= [fZ~N(0,1)
E.(x)=®(x) = f_ fx(2)dz = \/T_nj_ e 2 dz

e This has no closed form expression, but is built in most software packages.

Stangard MNomal




Statistics

e Expectation: The mean value, center of mass, first moment:
Blg001 = | g@pe()dx =

e N-th moment: g(x) = x™
e N-th central moment: g(x) = (x — )" p = Ex[z]
o Mean: Ex[X] = [ . xpy(x)dx
" ElaX] = aE[X]
" Ela+X]=a+E[X]
e Variance(Second central moment): Var(x) = Ex[(X — Ex[X])?] = Ex[X?] — Ex[X]?
= Var(aX) = a?Var(X)
» Var(a+X) =Var(X)



Central Limit Theorem

o If (Xy,X,,..X,) arei.i.d. continuous random variables, then the joint distribution is
fX)
e CLT proves that f(X) is Gaussian with mean E[X;] and Var[X;]

X=X Xy X)) =30, X, asno o

e Somewhat of a justification for assuming Gaussian noise

2
S

0 0.5 1 0 0.5 | 0 0.5 1



Joint RVs and Marginal Densities

e Joint cumulative distribution:
x [y
PGy =PXsanr <yl = | fo(apdads

e Marginal densities:

= S = o ey BB
= px(x) =Xy (%0 7))
e Expectation and Covariance:
= E[X+Y]=E[X]+E[Y]
= cov(X,Y) = E[(X — Ex[X])(Y — Ey(Y)] = E[XY] — E[X]E[Y]
» Var(X+Y)=Var(X) + 2cov(X,Y) + Var(Y)



Conditional Probability

P(X | Y) = Fraction of the worlds in which X is true given that Y is also true.
For example:

= H = "Having a headache"

= F = "Coming down with flu"

» P(Headche| Flu) = fraction of flu-inflicted worlds in which you have a
headache. How to calculate?

Definition:

P(X,Y) P(Y | X)P(X)
PY)  P(Y)

PX1Y)=

Corollary:
P(X,Y)=P(Y | X)P(X)
This is called Bayes Rule



Is the following statement TRUE or FALSE: p (X = z|Y = y) = <p=2p(=yX=a)

Y p(X=a")p(Y=y|X=2")



The Bayes Rule

P( Headache ,Flu) _ P(Flul| Headache)P( Headache)

P( Headache| Flu) =

P(Flu) P(Flu)
e Other cases:
. _ P(XIY)P(Y)
P(Y1X)= P(XIY)P(Y)+P(X|=Y)P(~Y)
. . _ P(XIY)P(Y)
P(Y =y; 1 X) YiesP(XIY=y)P(Y=y;)
P(XIY,Z)P(Y,Z) _ P(X|Y,Z)P(Y,Z)

« P(Y|X,Z)=

P(X,2) "~ P(XIY,Z)P(Y,Z)+P(X|-Y,Z)P(~Y,Z)



Rules of Independence

e Recall that for events E and H , the probability of E given H , written as P(E | H), is

P(E, H)

P(E | H) = O

e FE and H are (statistically) independent if
P(E,H) = P(E)P(H)

e Or equivalently
P(E) = P(E | H)
That means, the probability of E is true doesn't depend on whether H is true or not
e E andF are conditionally independent given H if
P(EIH,F)=P(E|H)

e Orequivalently

P(E,F | H) = P(E | H)P(F | H)



Suppose random variables Y,z and ¢ are related by Y = 3, + 1z + ¢, with 3, and 3, are
parameters and ¢ is assumed to independent of r and follow normal distribution with
mean 0 and constant variance. Please calculate: (1) E(e|z), and (2) E(Y|x).



Suppose random variables Y,z and ¢ are related by Y = 3, + 1z + ¢, with 3, and 3, are
parameters and ¢ is assumed to independent of r and follow normal distribution with
mean 0 and constant variance. Please calculate: (1) E(e|z), and (2) E(Y|x).

Elelz] = Ele] =0



Suppose random variables Y,z and ¢ are related by Y = 3, + 1z + ¢, with 3, and 3, are
parameters and ¢ is assumed to independent of r and follow normal distribution with
mean 0 and constant variance. Please calculate: (1) E(e|z), and (2) E(Y|x).

Elelz] = Ele] =0
ElY|z] = E[Bo + B1z + €|z] = By + b1z + Ele|z] = By + f1z

« E[X+Y]=E[X]+E[Y]



Rules of Independence

e Examples:

P(Virus | Drink Beer) = P(Virus)
iff Virus is independent of Drink Beer

P(Flu | Virus; DrinkBeer) = P(FluVirus)
iff Flu is independent of Drink Beer, given Virus

P(Headache | Flu; Virus; DrinkBeer) = P(Headache|Flu; DrinkBeer)
iff Headache is inde‘pendent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:
P(Headache; Flu; Virus; DrinkBeer)

= P(Headache | Flu; Virus; DrinkBeer) P(Flu | Virus; DrinkBeer)
P(Virus | Drink Beer) P(DrinkBeer)
= P(Headache|Flu; DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)



Multivariate Gaussian

1 1
— v — iNT 1 0y —
e Moment Parameterization u = E(X)
Z=Cov(X) =E[X-wX-w']

e Mahalanobis Distance 42 = (x = u) T2 1(x — )
e Tons of applications (MoG, FA, PPCA, Kalman filter,...)



Multivariate Gaussian P (X1, X2)
e Joint Gaussian P(Xy,X5)

PR

e Marginal Gaussian

e Conditional Gaussian P(X; | X, = x5)

Uiz =ty + 212255 (g — 1)
21|2 =211 — 21222_21221



Operations on Gaussian R.V.

e The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x
is distributed
E(AX +b) = AE(X) + b
Cov(AX + b) = ACov(X)AT
this means that for Gaussian distributed quantities:
X~NWwZX)—>AX+b~N(Au+ b, AZAT)

e The sum of two independent Gaussian r.v. is a Gaussian
Y=X1+X,X1 LXo =1y = pg +Up, 2y =27 + 25

e The multiplication of two Gaussian functions is another Gaussian function (although
no longer normalized)

N(a, A)N(b, B) x N(c,C)
whereC = (A1 +B 1)L, c=CA la+ CB™ b



Maximum Log-Likelihood Estimation (MLE)

° Example; toss a coin NN times with n head

e Objective function:

1(8; Head) = log P( Head | 0) = log 6™ (1 — 8)N" =nlog 6 + (N —n)log (1 —6)



Maximum Log-Likelihood Estimation (MLE)

° Example; toss a coin NN times with n head
e Objective function:

1(8; Head) = log P( Head | 0) = log 6™ (1 — 8)N" =nlog 6 + (N —n)log (1 —6)

e \We need to maximize this w.r.t. 8

e Take derivatives w.r.t. 8




Machine Learning for Apartment Hunting

e Suppose you are to move to Atlanta

e And you want to find the most
reasonably priced apartment

satisfying your needs:
monthly rent = 6, (living area) + 05(# bedroom)

Living area (ft?)

# bedroom

Monthly rent ($)

230

1

900

506

1800

433

2

1500

190

1

800

150

270




Linear Regression Model

o Assume y is a linear function of x (features) plus noise €
monthly rent = 6 (living area) + 65(# bedroom)

y =0y +60:x;1++0,x, +€

where ¢ is an error model as Gaussian N (0, 02) €|

Probability

o Let 8 = (6,04, ...,0,,)7, and augment data by one

dimension

Linear algebra

x < (1,x)7

Theny =0Tx+¢ \

Linear algebra

e

%o




Gaussian Likelihood

» Assume y is a linear in x plus noise € v
y =0Tx+e€

» Assume ¢ follows a Gaussian N(0, g)

o 1 i _ T i)
p(¥'[x';0) = —=—exp (— b -0 x) )

V2ro 207 i
[ J e 7 ¢
» By independence assumption, likelihood
is x

L(6)

il i 1 m Z:n yi - HTxi :
=] [pGl ;H)z(mg) eXp(‘ ( 207 ) >
l S~ Probability







max log L(0) =

Z(y — 0" z%)? — mlog(V2no)

Least Mean Square



Reference

e Chapter 2 in Pattern Recognition and Machine Learning. Springer.
2006


https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Q&A



