

CS4641 Spring 2025 Brief Intro to Optimization

Bo Dai School of CSE, Georgia Tech bodai@cc.gatech.edu

https://bo-dai.github.io/CS4641-spring2025/

Machine Learning for Apartment Hunting

- Suppose you are to move to Atlanta
- And you want to find the most reasonably priced apartment satisfying your needs:

Living area (ft ²)	# bedroom	Monthly rent (\$)
230	1	900
506	2	1800
433	2	1500
190	1	800
150	1	?
270	1.5	?

Linear Regression Model

• Assume y is a linear function of x (features) plus noise ϵ

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n + \epsilon$$

where ϵ is an error model as Gaussian $N(0, \sigma^2)$ Probability

• Let
$$\theta = (\theta_0, \theta_1, ..., \theta_n)^T$$
, and augment data by one dimension
 $x \leftarrow (1, x)^T$
Then $y = \theta^T x + \epsilon$
Linear algebra
Linear algebra

Gaussian Likelihood

• Assume y is a linear in x plus noise ϵ

$$y = \theta^{\mathsf{T}} x + \epsilon$$

• Assume ϵ follows a Gaussian $N(0, \sigma)$

$$p(y^{i} \mid x^{i}; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{i} - \theta^{\mathsf{T}}x^{i})^{2}}{2\sigma^{2}}\right)$$

• By independence assumption, likelihood is

$$L(\theta) = \prod_{i}^{m} p(y^{i} | x^{i}; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} \exp\left(-\frac{\sum_{i}^{m} (y^{i} - \theta^{\top} x^{i})^{2}}{2\sigma^{2}}\right)$$

Probability

MLE

. .

$$L(\theta) = \prod_{i=1}^{m} p(y^{i} | x^{i}; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} \exp\left(-\frac{\sum_{i=1}^{m} (y^{i} - \theta^{\top} x^{i})^{2}}{2\sigma^{2}}\right)$$

MLE

$$L(\theta) = \prod_{i=1}^{m} p(y^{i}|x^{i};\theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} \exp\left(-\frac{\sum_{i=1}^{m} (y^{i} - \theta^{\top}x^{i})^{2}}{2\sigma^{2}}\right)$$
$$\max_{\theta} \log L(\theta) = -\frac{1}{2\sigma^{2}} \sum_{i=1}^{m} (y^{i} - \theta^{\top}x^{i})^{2} - m \log(\sqrt{2\pi\sigma})$$
Optimization

Least Mean Square for Linear Regression

Optimization Problem

minimize $f(\theta)$

- $\theta \in \mathbf{R}^d$ is the variable or decision variable
- $f: \mathbf{R}^d \to \mathbf{R}$ is the objective function
- goal is to choose θ to minimize f

Optimization Problem

minimize $f(\theta)$

- $\theta \in \mathbf{R}^d$ is the variable or decision variable
- $f: \mathbf{R}^d \to \mathbf{R}$ is the objective function
- goal is to choose θ to minimize f
- θ^* is optimal means that for all $\theta, f(\theta) \ge f(\theta^*)$
- $egin{aligned} & heta^* = rg\min_{ heta} \ f(heta) \ & f^* = \min_{ heta} \ f(heta) \end{aligned}$
- $f^* = f(\theta^*)$ is the optimal value of the problem

Optimality Condition

- let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- if θ^* is optimal, then $\nabla f(\theta^*) = 0$
- $\nabla f(\theta) = 0$ is called the optimality condition for the problem

Optimality Condition

- let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- if θ^* is optimal, then $\nabla f(\theta^*) = 0$
- $\nabla f(\theta) = 0$ is called the optimality condition for the problem
- there can be points that satisfy $\nabla f(\theta) = 0$ but are not optimal
- we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- not all stationary points are optimal

Optimality Condition

- let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- if θ^* is optimal, then $\nabla f(\theta^*) = 0$
- $\nabla f(\theta) = 0$ is called the optimality condition for the problem
- there can be points that satisfy $\nabla f(\theta) = 0$ but are not optimal
- we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- not all stationary points are optimal

• in some cases, we can solve the problem analytically

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$
- optimality condition is $\nabla f(\theta) = 2X^{\mathsf{T}}(X\theta y) = 0$

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$
- optimality condition is $\nabla f(\theta) = 2X^{T}(X\theta y) = 0$ this has unique solution $\theta^{*} = (X^{T}X)^{1}X^{T}y = X^{\dagger}y$ (when columns of X are linearly independent)

- in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||_2^2$
- optimality condition is $\nabla f(\theta) = 2X^T(X\theta y) = 0$ this has unique solution $\theta^* = (X^TX)^1X^Ty = X^{\dagger}y$ (when columns of X are linearly independent)

What if optimality condition is difficult to be solved?

Iterative Algorithm

- iterative algorithm computes a sequence $\theta^1, \theta^2, ...$
- θ^k is called the k th iterate
- θ^1 is called the starting point

$$f(\theta^{k+1}) < f(\theta^k), k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

Iterative Algorithm

- iterative algorithm computes a sequence $\theta^1, \theta^2, ...$
- θ^k is called the k th iterate
- θ^1 is called the starting point

$$f(\theta^{k+1}) < f(\theta^k), k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

• this means that $f(\theta^k)$ converges, but not necessarily to f^*

Iterative Algorithm

- iterative algorithm computes a sequence $\theta^1, \theta^2, ...$
- θ^k is called the k th iterate
- θ^1 is called the starting point

$$f(\theta^{k+1}) < f(\theta^k), k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

• this means that $f(heta^k)$ converges, but not necessarily to f^\star

Gradient Descent

Gradient Descent

Gradient Descent

Iterative Algorithm

- iterative algorithm computes a sequence $\theta^1, \theta^2, ...$
- θ^k is called the k th iterate
- θ^1 is called the starting point
- many iterative algorithms are descent methods, which means

$$f(\theta^{k+1}) < f(\theta^k), k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

• this means that $f(\theta^k)$ converges, but not necessarily to f^*

Gradient Method Summary

choose an initial $\theta^1 \in {\bf R}^d$ and $h^1>0$ (e.g., $\theta^1=0, h^1=1$) for $k=1,2,\ldots,k^{\max}$

- 1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$
- 3. if $f(\theta^{\text{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
- 4. else set $h^k := 0.5h^k$ and go to step 2

Gradient Method Summary

choose an initial $\theta^1 \in {\bf R}^d$ and $h^1>0$ (e.g., $\theta^1=0, h^1=1$) for $k=1,2,\ldots,k^{\max}$

- 1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$

3. if $f(\theta^{\text{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$

4. else set $h^k := 0.5h^k$ and go to step 2

Step-size Matters

Stopping Criterion

- in practice, we stop after a finite number *K* of steps
- typical stopping criterion: stop if $\|\nabla f(\theta^k)\|_2 \le \epsilon$ or $k = k^{\max}$
- ϵ is a small positive number, the stopping tolerance
- k^{\max} is the maximum number of iterations

Gradient Method Convergence

• (assuming some technical conditions hold) we have

 $\left\| \nabla f(\theta^k) \right\|_2 \to 0 \text{ as } k \to \infty$

- i.e., the gradient method always finds a stationary point
- for convex problems
 - gradient method is non-heuristic
 - ▶ for any starting point θ^1 , $f(\theta^k) \to f^*$ as $k \to \infty$
- for non-convex problems
 - gradient method is heuristic
 - ▶ we can (and often do) have $f(\theta^k)
 ightarrow f^*$

2

Example: Convex Objective

• *f* is convex

Example: Convex Objective

- $f(\theta) = \frac{1}{3} \left(p^{\text{hub}} \left(\theta_1 1 \right) + p^{\text{hub}} \left(\theta_2 1 \right) + p^{\text{hub}} \left(\theta_1 + \theta_2 1 \right) \right)$
- f is convex
- optimal point is $\theta^* = (2/3, 2/3)$, with $f^* = 1/9$

Example: Convex Objective

- $f(\theta^k)$ is a decreasing function of k, (roughly) exponentially
- $\|\nabla f(\theta^k)\| \to 0 \text{ as } k \to \infty$

Example: Non-Convex Objective

• gradient algorithm converges, but limit depends on initial guess

Example: Non-Convex Objective

Example: Non-Convex Objective

Recap on Gradient Descent

Gradient descent minimizes $\ell(w)$ iteratively:

$$w^{t+1} = w^t - \eta \nabla \ell(w)|_{w = w_t}$$

Stochastic Gradient Descent

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly Iterate until convergence:

- 1. Randomly sample a point (x_i, y_i) from the n data points
- 2. Compute noisy gradient $\tilde{g}^t = \nabla \ell(x_i, y_i; w)|_{w=w^t}$
- 3. Update (GD): $w^{t+1} = w^t \eta \tilde{g}^t$

Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an unbiased estimate of the true gradient

Note the point (x_i, y_i) is uniformly random sampled from n data points, we have:

$$\mathbb{E}\nabla\ell(x_i, y_i; w)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla\ell(x_i, y_i; w) = \nabla[\underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)}_{\ell(w)}]_{\ell(w)} = \nabla\ell(w)$$

Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of n).

$$\vec{\nabla} f(\vec{\theta}) = \vec{\nabla} \sum_{j=1}^{n} f_j(\vec{\theta}) \text{ vs. } \vec{\nabla} f_j(\vec{\theta})$$

Apply GD and SGD to LMS

$$\max_{\theta} \log L(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 - m \log(\sqrt{2\pi}\sigma)$$

• The gradient of LMS is

$$\frac{1}{m} \nabla_{\theta} \log L(\theta) = \frac{1}{m\sigma^2} \sum_{i=1}^{m} (y^i - \theta^\top x^i) x^i$$

• The stochastic gradient of LMS is

$$\nabla_{\theta} \log L(\theta) \Big|_{\text{sample } i} = \frac{1}{\sigma^2} \Big(y^i - \theta^\top x^i \Big) x^i$$

Summary

- Random Search
- Closed-form
- Iterative methods:
 - Local Search
 - Gradient Descent
 - Stochastic Gradient Descent

- Homework 1 is released
- Due: 11:59PM EST, 01/29/2025

