

CS4641 Spring 2025 Linear Regression (Cont')

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

Computation Resources

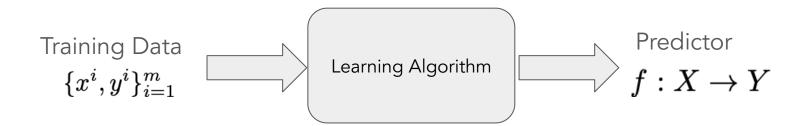
- Google Colaboratory allows free access to run Jupyter Notebooks using GPU resources.
- The Google Cloud Platform and AWS Educate are also good resources.
- The GitHub Student Developer Pack also offers free Microsoft Azure and Digital Ocean credits.
- This semester, we are also offering PACE ICE, Georgia Tech's in-home cluster to students.

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models:

Gaussian noise + linear model/polynomial model

2. Derive loss function:

MLE vs. MAP

3. Select optimizer

Necessary Condition vs. (Stochastic) GD

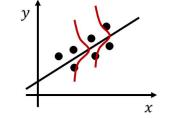
Probabilistic Model: Gaussian Likelihood

• Assume y is a linear in x plus noise ϵ

$$y = \theta^\top x + \epsilon$$

• Assume ϵ follows a Gaussian $N(0,\sigma)$ $\epsilon \sim \mathcal{N}(0,\sigma)$

$$\mathbb{E}[y] = \theta^\top x + \mathbb{E}[\epsilon] = \theta^\top x$$



$$y = \theta^{\top} x + \epsilon \sim \mathcal{N}(\theta^{\top} x, \sigma)$$
$$p(y^{i} | x^{i}; \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{i} - \theta^{\top} x^{i})^{2}}{2\sigma^{2}}\right)$$

Maximum log-Likelihood Estimation (MLE)

$$L(\theta) = \prod_{i=1}^{m} p(y^{i} | x^{i}; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} \exp\left(-\frac{\sum_{i=1}^{m} (y^{i} - \theta^{\top} x^{i})^{2}}{2\sigma^{2}}\right)$$

$$\max_{\theta} \log L(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 - m \log(\sqrt{2\pi}\sigma)$$

Select Optimizer

$$\min_{ heta} \ -\log L(heta) \propto rac{1}{m} \sum_{i=1}^m (y^i - heta^ op x^i)^2$$

- Necessary Condition
- (Stochastic) Gradient Descent

Gradient Method Revisit

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^\top x^i)^2$$
$$f(\theta)$$
$$\theta^1 = 0, h^1 = 1)$$

choose an initial $\theta^1\in {\bf R}^d$ and $h^1>0$ (e.g., $\theta^1=0, h^1=1$) for $k=1,2,\ldots,k^{\max}$

- 1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$

Gradient Calculation

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^{\top} x^i)^2$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^{m} (y^i - \theta^\top x^i) x^{i^\top}$$

Gradient Method Revisit

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^{m} (y^{i} - \theta^{\top} x^{i})^{2}$$
$$f(\theta)$$
$$\theta^{1} = 0, h^{1} = 1)$$

choose an initial $\theta^1\in {\bf R}^d$ and $h^1>0$ (e.g., $\theta^1=0, h^1=1$) for $k=1,2,\ldots,k^{\max}$

- 1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$

$$\theta^k + \frac{h^k}{m} \sum_{i=1}^m (y^i - (\theta^k)^\top x^i) (x^i)^\top$$

Gradient Method Revisit

choose an initial $\theta^1 \in \mathbf{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0, h^1 = 1$) for $k = 1, 2, ..., k^{\max}$ Stochastic Approximation 1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough

2. form tentative update $\theta^{\text{tent}} = \theta^k - h^k \nabla f(\theta^k)$

Stochastic Gradient Descent

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^{m} (y^{i} - \theta^{\mathsf{T}} x^{i}) x^{i} \approx (y^{i} - \hat{\theta}^{t^{\mathsf{T}}} x^{i}) x^{i}$$

Initialize $\theta^0 \in \mathbb{R}^d$ randomly Iterate until convergence:

- 1 Randomly sample a point (x_i, y_i) from the *n* data points
- 2 Compute noisy gradient $\tilde{g}^t = (y^i (\theta^t)^T x^i) (x^i)^T$
- 3 Update (GD): $\theta^{t+1} = \theta^t \eta \tilde{g}^t$

Optimizer Comparison

• Solve normal equations

$$(X^\top X)\hat{\theta} = X^\top y$$

- Pros: a single-shot algorithm! Easiest to implement
- Cons: need to compute inverse, expensive, numerical issue (e.g., matrix is singular ...)
- Gradient descent

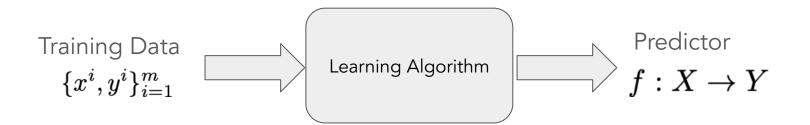
$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{\alpha}{m} \sum_{i=1}^m \left(y^i - (\hat{\theta}^t)^\top x^i \right) x^i$$

- Pros: fast-converging, easy to implement
- Cons: need to read all data
- Stochastic gradient update rule

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \beta \left(y^i - (\hat{\theta}^t)^\top x^i \right) x^i$$

- Pros: low per-step cost
- Cons: slow-converging

Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models:

Gaussian noise + linear model/ polynomial model

2. Derive loss function:

MLE vs. MAP

3. Select optimizer Necessary Condition vs. (Stochastic) GD

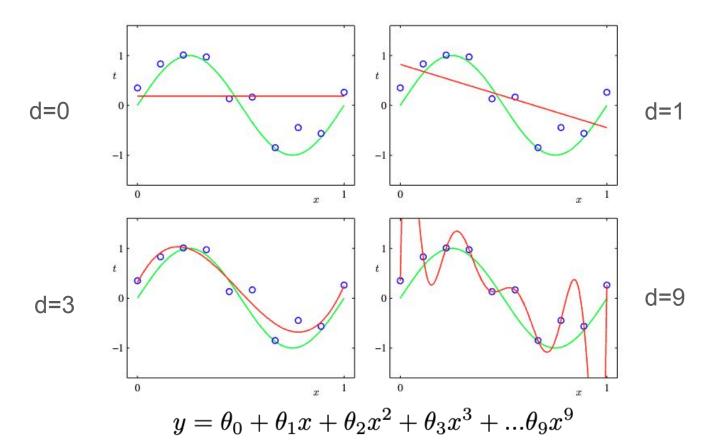
```
Polynomial Regression
```


- Features:
 - \circ $\;$ Living area, distance to campus, # of bedroom \ldots
 - \circ Denotes as $ilde{x} = [1, x_1, (x_1)^2, \dots, (x_1)^d, \dots, x_n, \dots, (x_n)^d]$
- Target
 - o Rent
 - o Denote as **y**
- Training set

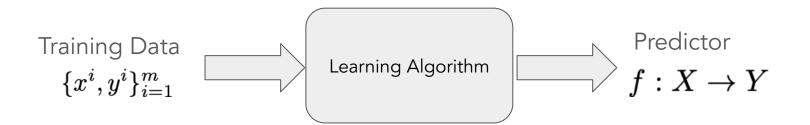
$$\tilde{X} = [\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^m]$$
$$0 \quad y = (y^1, y^2, \dots, y^m)^\top$$

 $y = \theta_0 + \theta_1^1 x_1 + \theta_1^2 (x_1)^2 + \theta_1^3 (x_1)^3 + \dots + \theta_1^d (x_1)^d$ $+ \theta_2^1 x_2 + \theta_2^2 (x_2)^2 + \theta_2^3 (x_2)^3 + \dots + \theta_2^d (x_2)^d$ $+ \dots$ $+ \theta_n^1 x_n + \theta_n^2 (x_n)^2 + \theta_n^3 (x_n)^3 + \dots + \theta_n^d (x_n)^d$

MLE Overfitting with Increased Degree



Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models:

Gaussian noise + linear model/ polynomial model

2. Derive loss function:

MLE vs. MAP

3. Select optimizer

Necessary Condition vs. (Stochastic) GD

Maximum a Posteriori (MAP)

$$\begin{split} L(\theta) &= \prod_{i=1}^{m} p(y^{i} | x^{i}; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^{m} \exp\left(-\frac{\sum_{i=1}^{m} (y^{i} - \theta^{\top} x^{i})^{2}}{2\sigma^{2}}\right) & \text{Likelihood} \\ p(\theta) \propto \exp(-\lambda \|\theta\|_{2}^{2}) & \text{Gaussian Prior} \\ p(\theta | \{x^{i}, y^{i}\}_{i=1}^{m}) &= \frac{\prod_{i=1}^{m} p(y^{i} | x^{i}, \theta) p(\theta)}{\int \prod_{i=1}^{m} p(y^{i} | x^{i}, \theta) p(\theta) d\theta} & \text{Posterior:} \\ \max_{\theta} \log p(\theta | \{x^{i}, y^{i}\}_{i=1}^{m}) &= \log L(\theta) + \log p(\theta) & \text{Ridge Regression} \\ \propto -\frac{1}{m} \sum_{i=1}^{m} (y^{i} - \theta^{\top} x^{i})^{2} - \frac{\lambda \|\theta\|_{2}^{2}}{2} \end{split}$$

Select Optimizer

$$\min_{\theta} -\log p(\theta|\{x^i, y^i\}_{i=1}^m) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 + \lambda \|\theta\|_2^2$$

- Necessary Condition
- (Stochastic) Gradient Descent

```
Polynomial Regression
```


- Features:
 - \circ $\;$ Living area, distance to campus, # of bedroom \ldots
 - \circ Denotes as $ilde{x} = [1, x_1, (x_1)^2, \dots, (x_1)^d, \dots, x_n, \dots, (x_n)^d]$
- Target
 - o Rent
 - o Denote as **y**
- Training set

$$\tilde{X} = [\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^m]$$
$$0 \quad y = (y^1, y^2, \dots, y^m)^\top$$

 $y = \theta_0 + \theta_1^1 x_1 + \theta_1^2 (x_1)^2 + \theta_1^3 (x_1)^3 + \dots + \theta_1^d (x_1)^d$ $+ \theta_2^1 x_2 + \theta_2^2 (x_2)^2 + \theta_2^3 (x_2)^3 + \dots + \theta_2^d (x_2)^d$ $+ \dots$ $+ \theta_n^1 x_n + \theta_n^2 (x_n)^2 + \theta_n^3 (x_n)^3 + \dots + \theta_n^d (x_n)^d$

Necessary Condition

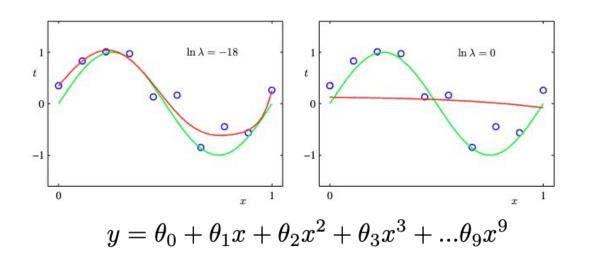
$$\frac{2}{m}\sum_{i=1}^{m}y^{i}x^{i} - \frac{2}{m}\sum_{i=1}^{m}x^{i}(x^{i})^{\top}\theta + 2\lambda\theta = 0$$
$$\frac{2}{m}Xy - \frac{2}{m}XX^{\top}\theta + 2\lambda\theta = 0$$

$$\Rightarrow \hat{\theta} = (XX^{\top} + \lambda mI)^{-1}Xy$$

MLE Overfitting with Increased Degree



Best Degree?



	$\ln \lambda = -\infty$	$\ln\lambda=-18$	$\ln\lambda=0$
θ_0	0.35	0.35	0.13
$ heta_1$	232.37	4.74	-0.05
θ_2	-5321.83	-0.77	-0.06
θ_3	48568.31	-31.97	-0.05
-	-231639.30	-3.89	-0.03
$ heta_4$	640042.26	55.28	-0.02
θ_5	-1061800.52	41.32	-0.01
$ heta_6$	1042400.18	-45.95	-0.00
θ_7	-557682.99	-91.53	0.00
θ_8	125201.43	72.68	0.01
θ_9			

- MLE with appropriate d
- MAP with large d, regularization will automatically select the appropriate model

MLE vs. MAP

MLE

- We chose the "best" θ that maximized the likelihood given data
- No prior

$$\widehat{\theta} = (XX^{\mathsf{T}})^{-1}Xy$$

- Numerical issue
- Overfitting

MAP

- We chose the "best" θ that maximized the posterior given data
- Prior matters

$$\hat{\theta} = (XX^{\top} + \lambda mI)^{-1}Xy$$

- No numerical issue
- Mitigate overfitting

CS4641 Spring 2025 Logistic Regression

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

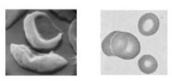
Classification Tasks

Diagnosing sickle cell anemia

Tax Fraud Detection

Web Classification

Feature, X



Label, Y

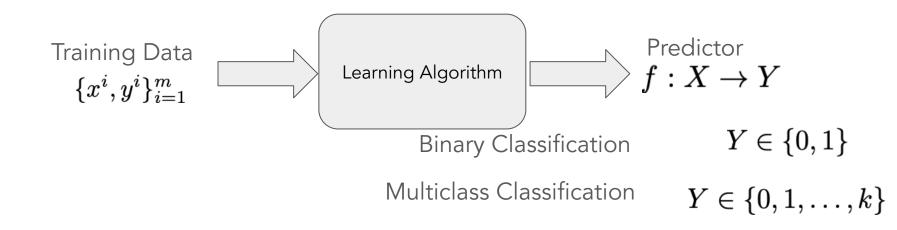
Sports
Science
News

ML Algorithm Pipeline

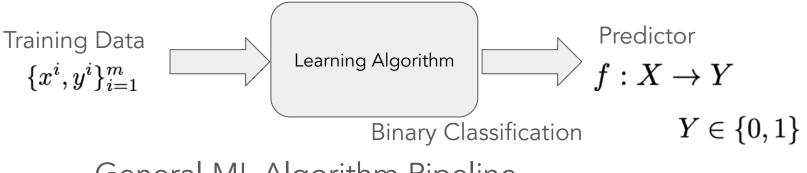
General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Classification algorithms



Binary Classification Algorithms



General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Probabilistic Model in Regression: Gaussian Likelihood

$$p(y^{i} \mid x^{i}; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{i} - \theta^{\top}x^{i})^{2}}{2\sigma^{2}}\right)$$

$$\begin{cases} p & \text{if } y = 1\\ 1 - p & \text{if } y = 0 \end{cases}$$

$$p\in [0,1]$$

$$p(y) = p^y (1-p)^{(1-y)}$$

$$p(y) = p^{y}(1-p)^{(1-y)}$$
 $p \in [0,1]$

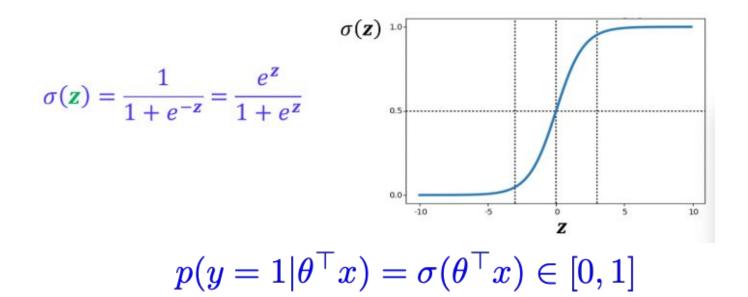
$$p(y|x;\theta) = p(y=1|\theta^{\top}x)^{y} \{1 - p(y=1|\theta^{\top}x)\}^{(1-y)}$$

$$p(y) = p^{y}(1-p)^{(1-y)}$$
 $p \in [0,1]$

$$p(y|x;\theta) = p(y=1|\theta^{\top}x)^{y} \{1 - p(y=1|\theta^{\top}x)\}^{(1-y)}$$

$$p(y=1|\theta^{\top}x) \in [0,1]$$

$$p(y = 1 | \theta^{\top} x) \in [0, 1]$$
 $\theta^{\top} x \in \mathbb{R}$



• Logistic regression model

$$p(y=1|x,\theta) = \frac{1}{1+\exp(-\theta^{\top}x)}$$

• Note that

$$p(y = 0|x, \theta) = 1 - \frac{1}{1 + \exp(-\theta^{\top}x)} = \frac{\exp(-\theta^{\top}x)}{1 + \exp(-\theta^{\top}x)}$$

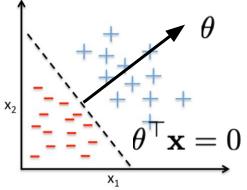
Logistic Regression is a Linear Classifier

- Decision boundaries for Logistic Regression?
 - At the decision boundary, label 1/0 are equiprobable.

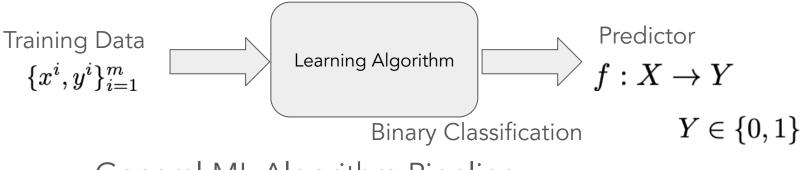
$$P(y = 1 | \mathbf{x}, \theta) = \frac{1}{1 + e^{-\theta^{\top} \mathbf{x}}}, \qquad P(y = 0 | \mathbf{x}, \theta) = \frac{1}{1 + e^{\theta^{\top} \mathbf{x}}}$$

to be equal: $e^{-\theta^{\top} \mathbf{x}} = e^{\theta^{\top} \mathbf{x}}$, whose only solution is $\theta^{\top} \mathbf{x} = 0$.

- ✓ ⇒ Decision boundary is linear.
- ✓ ⇒ Logistic regression is a <u>probabilistic linear classifier</u>.



Binary Classification Algorithms



General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

MLE

• Logistic regression model

$$p(y=1|x,\theta) = \frac{1}{1+\exp(-\theta^{\top}x)}$$

• Note that

$$p(y=0|x, heta)=1-rac{1}{1+\exp(- heta^ op x)}=rac{\exp(- heta^ op x)}{1+\exp(- heta^ op x)}$$

• Plug in

$$l(\theta) := \log \prod_{i=1}^{n} p(y^{i}|x^{i}, \theta) \qquad (Bernoulli)$$

$$= \sum_{i=1}^{n} \log \left(\frac{\exp(-\theta^{\top}x^{i})}{1 + \exp(-\theta^{\top}x^{i})} \right) \underbrace{I(y^{i} = 0)}_{1-y^{i}} + \log \left(\frac{1}{1 + \exp(-\theta^{\top}x^{i})} \right) \underbrace{I(y^{i} = 1)}_{y^{i}}$$

$$= \sum_{i=1}^{n} (y^{i} - 1)\theta^{\top}x^{i} - \log(1 + \exp(-\theta^{\top}x^{i}))$$

MAP

• Logistic regression model

$$p(y=1|x, heta) = rac{1}{1+\exp(- heta^ op x)}$$

Note that

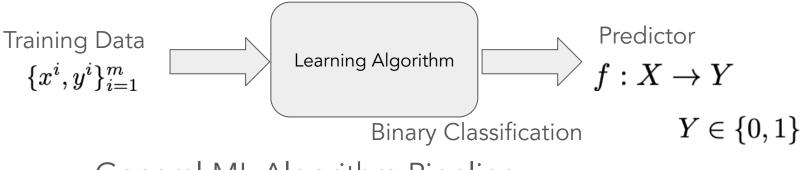
$$p(y = 0|x, \theta) = 1 - \frac{1}{1 + \exp(-\theta^{\top}x)} = \frac{\exp(-\theta^{\top}x)}{1 + \exp(-\theta^{\top}x)}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|_{2}^{2})$$

$$\max_{\theta} \log p(\theta|\{x^{i}, y^{i}\}_{i=1}^{m}) = \log L(\theta) + \log p(\theta)$$

$$= \sum_{i} (y^{i} - 1) \theta^{\top}x^{i} - \log(1 + \exp(-\theta^{\top}x^{i})) - \lambda \|\theta\|_{2}^{2}$$

Binary Classification Algorithms



General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Select Optimizer

$$\max_{\theta} \log L(\theta) = \sum_{i} (y^{i} - 1) \, \theta^{\mathsf{T}} x^{i} - \log(1 + \exp(-\theta^{\mathsf{T}} x^{i}))$$

- Necessary Condition
- (Stochastic) Gradient Descent

Gradient Calculation of MLE

$$\max_{\theta} \log L(\theta) = \sum_{i} (y^{i} - 1) \theta^{\mathsf{T}} x^{i} - \log(1 + \exp(-\theta^{\mathsf{T}} x^{i}))$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i} (y^{i} - 1)x^{i} + \frac{\exp(-\theta^{\top}x^{i})x^{i}}{1 + \exp(-\theta^{\top}x^{i})}$$

Gradient Calculation of MAP

$$\max_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}) = \sum_{i} (y^{i} - 1) \, \boldsymbol{\theta}^{\top} x^{i} - \log(1 + \exp(-\boldsymbol{\theta}^{\top} x^{i})) - \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i} (y^{i} - 1)x^{i} + \frac{\exp(-\theta^{\top}x^{i})x^{i}}{1 + \exp(-\theta^{\top}x^{i})} - 2\lambda\theta$$

Necessary Condition?

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i} (y^{i} - 1)x^{i} + \frac{\exp(-\theta^{\top} x^{i})x^{i}}{1 + \exp(-\theta^{\top} x^{i})} = 0$$

Nonlinear Equation! Does NOT admit a closed-form solution

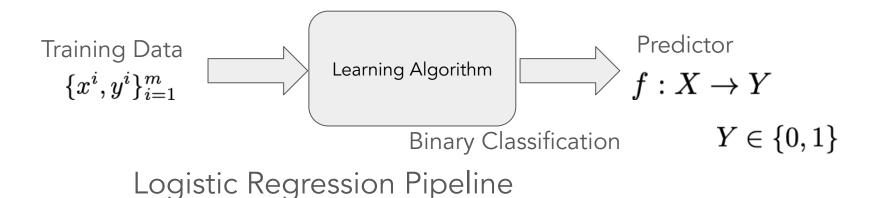
(Stochastic) Gradient Descent

• Initialize parameter $heta^0$

• Do

$$\theta^{t+1} \leftarrow \theta^t + \eta \sum_i (y^i - 1) x^i + \frac{\exp(-\theta^\top x^i) x^i}{1 + \exp(-\theta^\top x)} \left[-2\lambda \theta \right]$$

Binary Classification Algorithms



- 1. Build probabilistic models: Bernoulli Distribution
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

