

CS4641 Spring 2025 Multi-Class Logistic Regression Naive Bayes

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Regression Algorithms

Linear Regression Pipeline

- Build probabilistic models: Gaussian Distribution + Linear Model
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer

Necessary Condition vs. (Stochastic) GD

Binary Classification Algorithms

- Build probabilistic models: Bernoulli Distribution + + Linear Model
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

Classification Tasks

Diagnosing sickle cell anemia

Tax Fraud Detection

Web Classification

Image Classification

Feature, X

Ar He

Label, Y

Cheat

. . .

 $Y \in \{0,1\}$

 \sim

Sports $Y \in \{0, 1, 2, \dots, k\}$ ScienceNews

 $\begin{array}{lll} \mathsf{Airplane} & Y \in \{0,1,2,\ldots,k\} \\ \mathsf{Automobile} \\ \mathsf{Bird} \end{array}$

Multiclass Classification Y Multiclass Logistic Regression Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Probabilistic Model in Binary Classification: Bernoulli Likelihood

$$\begin{cases} p & \text{if } y = 1\\ 1 - p & \text{if } y = 0 \end{cases}$$

$$p\in [0,1]$$

$$p(y) = p^y (1-p)^{(1-y)}$$

Probabilistic Model in Binary Classification: Bernoulli Likelihood $p(y) = p^{y}(1-p)^{(1-y)}$ $p(y|x;\theta) = p(y=1|\theta^{\top}x)^{y} \{1 - p(y=1|\theta^{\top}x)\}^{(1-y)}$ $\sigma(z)$ 10 $\sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}} = \frac{e^{\mathbf{z}}}{1 + e^{\mathbf{z}}}$ 0.0 5 10 -10 $p(y = 1 | \theta^\top x) = \sigma(\theta^\top x) \in [0, 1]$

Probabilistic Model in Multiclass Classification: Categorical Likelihood

$$p(y=i) = p_i, \quad \sum_{i=1}^k p_i = 1, \quad p_i \ge 0$$

 $p(y) = \prod_{i=1}^k p_i^{y_i}$
 $p = (p_1, p_2, \dots, p_k)$
 $y = (y_1, y_2, \dots, y_k), \quad y_i \in 0, 1, \quad \sum_{i=1}^k y_i = 1$
1-of-k code

Probabilistic Model in Multiclass Classification: Categorical Likelihood

$$p(y) = \prod_{i=1}^{k} p_i^{y_i}$$
$$p = (p_1, p_2, \dots, p_k)$$

$$p(y|\{\theta_i^{\top}x\}_{i=1}^k) = \prod_{i=1}^k p(y_i = 1|\theta_i^{\top}x)^{y_i}$$

Softmax Parametrization

$$p(y_i = 1 | \theta_i^{\top} x) \in (0, 1), \quad \sum_{i=1}^k p(y_i = 1 | \theta_i^{\top} x) = 1$$

Positivity
$$p(y_i = 1 | \theta_i^\top x) \propto \exp(\theta_i^\top x)$$

Normalization $p(y_i = 1 | \theta_i^\top x) = \frac{\exp(\theta_i^\top x)}{\sum_{i=1}^k \exp(\theta_i^\top x)}$

Multiclass Classification $Y \in \{0, 1, \dots, k\}$ Multiclass Logistic Regression Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

MLE

• Given all input data $\{x^i, y^i\}_{i=1}^m$ $p(y^i|\theta^{\top}x^i) = \prod_{j=1}^k p(y^i_j = 1|\theta^{\top}x^i)^{y^i_j}$ • Log-likelihood $\ell(\theta) = \sum_{i=1}^m \sum_{j=1}^k y^i_j \log p(y^i_j = 1|\theta^{\top}x^i)$

MLE

• Given all input data $\{x^i, y^i\}_{i=1}^m$ $p(y^i| heta^ op x^i) = \prod p(y^i_j = 1| heta^ op x^i)^{y^i_j}$ i=1Log-likelihood $\ell(heta) = \sum^m \sum^k y^i_j \log p(y^i_j = 1 | heta^ op x^i)$ i=1 i=1 $u = \sum_{i=1}^m \sum_{j=1}^k y^i_j \log rac{\exp(heta_j^ op x^i)}{\sum_{c=1}^k \exp(heta_c^ op x^i)} \, .$ $x = \sum^m \sum^k y^i_j(heta^ op _j x^i) - \sum^m \log \sum^k \exp(heta^ op _c x^i)$ i=1 i=1

MLE

• Given all input data $\{x^i, y^i\}_{i=1}^m$ $p(y^i| heta^ op x^i) = \prod p(y^i_j = 1| heta^ op x^i)^{y^i_j}$ i=1Log-likelihood $\ell(heta) = \sum^m \sum^k y^i_j \log p(y^i_j = 1 | heta^ op x^i)$ cross-entropy i=1 i=1 $u = \sum_{i=1}^m \sum_{j=1}^k y^i_j \log rac{\exp(heta_j^ op x^i)}{\sum_{c=1}^k \exp(heta_c^ op x^i)} \, .$ $x_{i} = \sum_{j=1}^{m} \sum_{k=1}^{k} y_{j}^{i}(heta_{j}^{ op}x^{i}) - \sum_{j=1}^{m} \log \sum_{k=1}^{k} \exp(heta_{c}^{ op}x^{i}) + \sum_{j=1}^{m} \log \sum_{k=1}^{k} \exp(heta_{c}^{ op}x^{i})$

MAP

• Likelihood
$$p(y=j|x, heta) = rac{\exp(heta_j^ op x)}{\sum_{c=1}^k \exp(heta_c^ op x)}$$

• Prior $p(heta) \propto \exp(-\lambda \| heta \|_2^2)$

$$\max_{ heta} \log p(heta|\{x^i,y^i\}_{i=1}^m) = \log L(heta) + \log p(heta)$$

$$=\sum_{i=1}^m\sum_{j=1}^ky_j^i heta_j^ op x^i-\sum_{i=1}^m\log\sum_{c=1}^k\exp(heta_c^ op x^i)-\lambda|| heta||_2^2$$

Logistic Regression is a Linear Classifier

- Decision boundaries for Logistic Regression?
 - At the decision boundary, label 1/0 are equiprobable.

$$P(y = 1 | \mathbf{x}, \theta) = \frac{1}{1 + e^{-\theta^{\top} \mathbf{x}}}, \qquad P(y = 0 | \mathbf{x}, \theta) = \frac{1}{1 + e^{\theta^{\top} \mathbf{x}}}$$

to be equal: $e^{-\theta^{\top} \mathbf{x}} = e^{\theta^{\top} \mathbf{x}}$, whose only solution is $\theta^{\top} \mathbf{x} = 0$.

- ✓ ⇒ Decision boundary is linear.
- \checkmark \Rightarrow Logistic regression is a <u>probabilistic linear classifier</u>.

Multiclass Logistic Regression is a Linear Classifier

• Decision boundaries for Multiclass Logistic Regression?

- $\checkmark \Rightarrow$ Decision boundary is linear.
- ✓ ⇒ Multiclass Logistic regression is a probabilistic linear classifier.

Multiclass Logistic Regression Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Select Optimizer

$$\ell(heta) = \sum_{i=1}^m \sum_{j=1}^k y^i_j(heta_j^ op x^i) - \sum_{i=1}^m \log \sum_{c=1}^k \exp(heta_c^ op x^i)$$

- Necessary Condition
- (Stochastic) Gradient Descent

Necessary Condition?

$$p(y=j|x, heta) = rac{\exp(heta_j^ op x)}{\sum_{c=1}^k \exp(heta_c^ op x)}
onumber \ rac{\partial \log L(heta)}{\partial heta} = \sum_{i=1}^m \sum_{j=1}^k (y_j^i - p(y_j^i = 1|x^i, heta)) x^i = 0$$

Nonlinear Equation! Does NOT admit a closed-form solution

Gradient Calculation of MLE

$$egin{aligned} &\max_{ heta} \log L(heta) = \sum_{i=1}^m \sum_{j=1}^k y_j^i heta_j^ op x^i - \sum_{i=1}^m \log \sum_{c=1}^k \exp(heta_c^ op x^i) \ &rac{\partial \log L(heta)}{\partial heta} = \sum_{i=1}^m \sum_{j=1}^k (y_j^i - p(y_j^i = 1 | x^i, heta)) x^i \ &p(y_j^i = 1 | x^i, heta) = rac{\exp(heta_j^ op x^i)}{\sum_{c=1}^k \exp(heta_c^ op x^i)} \end{aligned}$$

Gradient Calculation of MAP

$$egin{aligned} &\max_{ heta} \log L(heta) = \sum_{i=1}^m \sum_{j=1}^k y_j^i heta_j^ op x^i - \sum_{i=1}^m \log \sum_{c=1}^k \exp(heta_c^ op x^i) - \lambda || heta||_2^2 \ &rac{\partial \log L(heta)}{\partial heta} = \sum_{i=1}^m \sum_{j=1}^k (y_j^i - p(y_j^i = 1 | x^i, heta)) x^i - 2\lambda heta \end{aligned}$$

(Stochastic) Gradient Descent

• Initialize parameter $heta^0$

• Do

$$heta^{t+1} \leftarrow heta^t + \eta \sum_{i=1}^m \sum_{j=1}^k (y^i_j - p(y^i_j = 1 | x^i, heta)) x^i \left(-2\lambda heta
ight)$$

Multiclass Classification YMulticlass Logistic Regression Pipeline

- Build probabilistic models: Categorical Distribution + Linear Model
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

Naive Bayes Classification

Naive Bayes Classification

Multiclass Classification Gaussian Naive Bayes Pipeline

 $Y \in \{0, 1, \dots, k\}$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Bayes' Rule

Softmax in Multiclass Classification

$$p(y_i = 1 | \theta_i^\top x) = \frac{\exp(\theta_i^\top x)}{\sum_{i=1}^k \exp(\theta_i^\top x)}$$

Bayes' Rule

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x,y)}{\sum_{z} P(x,y)}$$
normalization constant
Prior: $P(y) \quad \pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0$
Likelihood (class conditional distribution : $p(x|y) = \mathcal{N}(x|\mu_y, \Sigma_y)$

Posterior:
$$P(y|x) = rac{P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}$$

Decision with Bayes' Rule

• The posterior probability of a test point

$$q_i(x) := P(y = i|x) = rac{P(x|y)P(y)}{P(x)}$$

$$\circ$$
 If $q_i(x) > q_j(x)$, then $y=i$, otherwise $y=j$

• Alternatively:

$$\circ$$
 If ratio $l(x)=rac{P(x|y=i)}{P(x|y=j)}>rac{P(y=j)}{P(y=i)}$, then $y=i$, otherwise $y=j$

$$\circ$$
 Or look at the log-likelihood ratio $h(x) = \ln rac{q_i(x)}{q_j(x)}$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

MLE of Naive Bayes

$$egin{aligned} & heta = [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \ &p(x^i | y^i_j = 1, heta) = rac{1}{Z} \exp\left(-rac{1}{2}(x^i - \mu_j)^ op \Sigma_j^{-1}(x^i - \mu_j)
ight) \ &P(y) \quad \pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0 \end{aligned}$$

MLE of Naive Bayes

$$egin{aligned} & heta = [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \ &p(x^i | y^i_j = 1, heta) = rac{1}{Z} \exp\left(-rac{1}{2}(x^i - \mu_j)^ op \Sigma_j^{-1}(x^i - \mu_j)
ight) \ &P(y) \quad \pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0 \end{aligned}$$

 $\log L(heta) = \log p(x,y| heta)$

MLE of Naive Bayes

$$\begin{split} \theta &= [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \\ p(x^i | y_j^i = 1, \theta) &= \frac{1}{Z} \exp\left(-\frac{1}{2}(x^i - \mu_j)^\top \Sigma_j^{-1}(x^i - \mu_j)\right) \\ \log L(\theta) &= \log p(x, y | \theta) = \log p(y | \theta) + \log p(x | y, \theta) \\ \log L(\theta) &= \sum_{i=1}^N \sum_{j=1}^k y_j^i \log \pi_j - \sum_{i=1}^N \log Z - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^k y_j^i (x^i - \mu_j)^\top \Sigma_j^{-1}(x^i - \mu_j) \\ \end{split}$$

$$\end{split}$$
Want $\arg \max_{\theta} \log L(\theta)$ subject to $\sum_{j=1}^k \pi_j = 1$

MAP of Naive Bayes

$$p(\theta) \propto \exp(-\lambda \|\theta\|_2^2)$$

$$\log L(heta) = \log p(x,y| heta) = \log p(y| heta) + \log p(x|y, heta)$$

$$\max_{ heta} \log p(heta|\{x^i,y^i\}_{i=1}^m) = \log L(heta) + \log p(heta)$$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Select Optimizer

$$\sum_{i=1}^N \sum_{j=1}^k y_j^i \log \pi_j - \log Z - rac{1}{2} \sum_{i=1}^N \sum_{j=1}^k y_j^i (x^i - \mu_j)^ op \Sigma_j^{-1} (x^i - \mu_j)$$

- Necessary Condition
- (Stochastic) Gradient Descent

Gradient Calculation of MLE

Take derivative w.r.t μ_k

$$rac{\partial \log L}{\partial \mu_k} = -\sum_{i=1}^N y_k^i \Sigma_k^{-1} (x^i - \mu_k) = 0$$

$$\mu_k = rac{\sum_{i=1}^N y_k^i x^i}{\sum_{i=1}^N y_k^i}$$

Take derivative w.r.t Σ_k^{-1} (not Σ_k)

Note:

$$rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[-rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^ op
ight] = 0$$

$$\left(egin{array}{l} \Sigma_k = rac{\sum_{i=1}^N y_k^i (x^i - \mu_k) (x^i - \mu_k)^ op}{\sum_{i=1}^N y_k^i} \end{array}
ight)$$

Take derivative w.r.t Σ_k^{-1} (not Σ_k)

Note:

$$egin{aligned} &rac{\partial \det(A)}{\partial A} = \det(A) A^{- op}\ & ext{det}(A^{-1}) = \det(A)^{-1}\ & ext{det}(A^{-1}) = \det(A)^{-1}\ & ext{det}(A^{-1}) = xx^{ op}\ & ext{scale} \Sigma^{ op} = xx^{ op} \end{aligned}$$

$$rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[-rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^ op
ight] = 0$$

$$Z_k = \sqrt{(2\pi)^D \det(\Sigma_k)}$$

$$egin{aligned} rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} &= rac{1}{Z_k} rac{\partial Z_k}{\partial \Sigma_k^{-1}} = (2\pi)^{-D/2} \det(\Sigma_k)^{-1/2} (2\pi)^{D/2} rac{\partial \det(\Sigma_k^{-1})^{-1/2}}{\partial \Sigma_k^{-1}} \ &= \det(\Sigma_k^{-1})^{1/2} \left(-rac{1}{2}
ight) \det(\Sigma_k^{-1})^{-3/2} \det(\Sigma_k^{-1}) \Sigma_k^{ op} = -rac{1}{2} \Sigma_k \ &rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[rac{1}{2} \Sigma_k - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^{ op}
ight] = 0 \ & \left(\Sigma_k = rac{\sum_{i=1}^N y_k^i (x^i - \mu_k) (x^i - \mu_k)^{ op}}{\sum_{i=1}^N y_k^i}
ight) \end{aligned}$$

Use Lagrange multiplier to derive π_k

$$egin{aligned} rac{\partial L(heta)}{\partial \pi_k} + \lambda rac{\partial \sum_k \pi_k}{\partial \pi_k} &= 0 \Rightarrow \lambda = -\sum_{i=1}^N y^i_k rac{1}{\pi_k} \ \pi_k &= -rac{\sum_{i=1}^N y^i_k}{\lambda} \end{aligned}$$

Apply constraint:
$$\sum_k \pi_k = 1 \Rightarrow \lambda = -N$$
 $\left(egin{array}{c} \pi_k = rac{\sum_{i=1}^N y_k^i}{N} \end{array}
ight)$

- 1. Build probabilistic models: Gaussian Likelihood
- 2. Derive loss function: MLE or MAP
- 3. Select optimizer: Necessary Condition

HW 2 is out Due: Feb 17th Team Formation Due: Feb 10th