

CS4641 Spring 2025 Naive Bayes Classifier: Discriminative vs. Generative Classifier

Bo Dai School of CSE, Georgia Tech <u>bodai@cc.gatech.edu</u>

Classification Tasks

Diagnosing sickle cell anemia

Tax Fraud Detection

Web Classification

Image Classification

Feature, X

Ar He

Label, Y

Cheat

. . .

 $Y \in \{0,1\}$

 \sim

Sports $Y \in \{0, 1, 2, \dots, k\}$ ScienceNews

 $\begin{array}{lll} \mathsf{Airplane} & Y \in \{0,1,2,\ldots,k\} \\ \mathsf{Automobile} \\ \mathsf{Bird} \end{array}$

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

Multiclass Logistic Regression Algorithms

Multiclass Logistic Regression Algorithms

Multiclass Classification $Y \in \{0, 1, \dots, k\}$ Multiclass Logistic Regression Pipeline

- Build probabilistic models: Categorical Distribution + Linear Model
- 2. Derive loss function: MLE and MAP
- 3. Select optimizer: (Stochastic) Gradient Descent

Naive Bayes Classification

Multiclass Classification Gaussian Naive Bayes Pipeline $Y \in \{0, 1, \dots, k\}$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Bayes' Rule

Softmax in Multiclass Classification

$$p(y_i = 1 | \theta_i^\top x) = \frac{\exp(\theta_i^\top x)}{\sum_{i=1}^k \exp(\theta_i^\top x)}$$

$$P(y|x) = rac{P(x|y)P(y)}{P(x)} = rac{P(x,y)}{\sum_z P(x,y)}$$

Bayes' Rule

$$P(y|x) = rac{P(x|y)P(y)}{P(x)} = rac{P(x,y)}{\sum_z P(x,y)}$$

Prior:
$$P(y)$$
 $\pi=(\pi_1,\pi_2,\ldots,\pi_k),$ $\sum_{i=1}^k\pi_i=1,\pi_i\geq 0$
Likelihood (class conditional distribution : $p(x|y)=\mathcal{N}(x|\mu_y,\Sigma_y)$

Posterior:
$$P(y|x) = rac{P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y)}$$

Decision with Bayes' Rule

• The posterior probability of a test point

$$q_i(x):=P(y=i|x)=rac{P(x|y)P(y)}{P(x)}$$

- Bayes decision rule:
 - \circ If $q_i(x) > q_j(x)$, then y=i , otherwise y=j
- Alternatively:

$$\circ$$
 If ratic $l(x)=rac{P(x|y=i)}{P(x|y=j)}>rac{P(y=j)}{P(y=i)}$, then $y=i$, otherwise $y=j$

 \circ Or look at the log-likelihood ratio $h(x) = \ln rac{q_i(x)}{q_j(x)}$

```
Naive Bayes Classifier
```


Multiclass Classification General ML Algorithm Pipeline $Y \in \{0, 1, \dots, k\}$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

MLE of Naive Bayes Classifier

$$egin{aligned} & heta = [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \ &p(x^i | y^i_j = 1, heta) = rac{1}{Z} \exp\left(-rac{1}{2}(x^i - \mu_j)^ op \Sigma_j^{-1}(x^i - \mu_j)
ight) \ &P(y) \quad \pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0 \end{aligned}$$

MLE of Naive Bayes Classifier

$$egin{aligned} & heta = [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \ &p(x^i | y^i_j = 1, heta) = rac{1}{Z} \exp\left(-rac{1}{2}(x^i - \mu_j)^ op \Sigma_j^{-1}(x^i - \mu_j)
ight) \ &P(y) \quad \pi = (\pi_1, \pi_2, \dots, \pi_k), \quad \sum_{i=1}^k \pi_i = 1, \pi_i \ge 0 \ &\log L(heta) = \log p(x, y | heta) \end{aligned}$$

MLE of Naive Bayes Classifier

$$\begin{split} \theta &= [\mu, \Sigma, \pi], \quad Z = \sqrt{(2\pi)^D \det(\Sigma)} \\ p(x^i | y_j^i = 1, \theta) &= \frac{1}{Z} \exp\left(-\frac{1}{2}(x^i - \mu_j)^\top \Sigma_j^{-1}(x^i - \mu_j)\right) \\ \log L(\theta) &= \log p(x, y | \theta) = \log p(y | \theta) + \log p(x | y, \theta) \\ \log L(\theta) &= \sum_{i=1}^N \sum_{j=1}^k y_j^i \log \pi_j - \sum_{i=1}^N \log Z - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^k y_j^i (x^i - \mu_j)^\top \Sigma_j^{-1}(x^i - \mu_j) \\ \end{split}$$

$$\end{split}$$
Want $\arg \max_{\theta} \log L(\theta)$ subject to $\sum_{j=1}^k \pi_j = 1$

MAP of Naive Bayes Classifier

$$p(\theta) \propto \exp(-\lambda \|\theta\|_2^2)$$

$$\log L(heta) = \log p(x,y| heta) = \log p(y| heta) + \log p(x|y, heta)$$

$$\max_{ heta} \log p(heta|\{x^i,y^i\}_{i=1}^m) = \log L(heta) + \log p(heta)$$

Naive Bayes Classifier

General ML Algorithm Pipeline

 $Y \in \{0, 1, \dots, n\}$

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP)
- 3. Select optimizer

Select Optimizer

$$\sum_{i=1}^N \sum_{j=1}^k y_j^i \log \pi_j - \log Z - rac{1}{2} \sum_{i=1}^N \sum_{j=1}^k y_j^i (x^i - \mu_j)^ op \Sigma_j^{-1} (x^i - \mu_j)$$

- Necessary Condition
- (Stochastic) Gradient Descent

Gradient Calculation of MLE $Z = \sqrt{(2\pi)^D \det(\Sigma)}$

Take derivative w.r.t μ_k

$$\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}\log \pi_{j} - \log Z - rac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}(x^{i}-\mu_{j})^{ op}\Sigma_{j}^{-1}(x^{i}-\mu_{j})$$

 $rac{\partial \log L}{\partial \mu_k} = \sum_{i=1}^N y_k^i \Sigma_k^{-1} (x^i - \mu_k) = 0 \qquad \qquad rac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = -2 \mathbf{W} (\mathbf{x} - \mathbf{s})$

Gradient Calculation of MLE $Z = \sqrt{(2\pi)^D \det(\Sigma)}$

Take derivative w.r.t μ_k $\sum_{k=1}^{N} \sum_{k=1}^{k}$

$$\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}\log \pi_{j} - \log Z - rac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}(x^{i}-\mu_{j})^{ op}\Sigma_{j}^{-1}(x^{i}-\mu_{j})$$

$$rac{\partial \log L}{\partial \mu_k} = - \sum_{i=1}^N y^i_k \Sigma^{-1}_k (x^i - \mu_k) = 0$$

-

$$\mu_k = rac{\sum_{i=1}^N y_k^i x^i}{\sum_{i=1}^N y_k^i}$$

Take derivative w.r.t $\ \Sigma_k^{-1}$ (not Σ_k) $Z = \sqrt{(2\pi)^D \det(\Sigma)}$

Note:

$$egin{aligned} &rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[-rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^ op
ight] = 0 \ &rac{\partial \det(A)}{\partial A} = \det(A) A^{- op} \ &rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} = rac{1}{Z_k} rac{\partial Z_k}{\partial \Sigma_k^{-1}} = (2\pi)^{-D/2} \det(\Sigma_k)^{-1/2} (2\pi)^{D/2} rac{\partial \det(\Sigma_k^{-1})^{-1/2}}{\partial \Sigma_k^{-1}} & \det(A^{-1}) = \det(A)^{-1} \ &= \det(\Sigma_k^{-1})^{1/2} \left(-rac{1}{2}
ight) \det(\Sigma_k^{-1})^{-3/2} \det(\Sigma_k^{-1}) \Sigma_k^ op = -rac{1}{2} \Sigma_k & rac{\partial x^ op A x}{\partial A} = x x^ op \ &\Sigma^ op = \Sigma \end{aligned}$$

Take derivative w.r.t Σ_k^{-1} (not Σ_k)

Note:

$$rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[-rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^ op
ight] = 0$$

$$\Sigma_k = rac{\sum_{i=1}^N y_k^i (x^i-\mu_k) (x^i-\mu_k)^ op}{\sum_{i=1}^N y_k^i}$$

Take derivative w.r.t Σ_k^{-1} (not Σ_k)

Note:

$$egin{aligned} &rac{\partial \det(A)}{\partial A} = \det(A) A^{- op}\ & ext{det}(A^{-1}) = \det(A)^{-1}\ & ext{det}(A^{-1}) = \det(A)^{-1}\ & ext{det}(A) = xx^{ op}\ & ext{}\Sigma^{ op} = xx^{ op}\ & ext{}\Sigma^{ op} = \Sigma \end{aligned}$$

$$rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[-rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^ op
ight] = 0$$

$$Z_k = \sqrt{(2\pi)^D \det(\Sigma_k)}$$

$$egin{aligned} rac{\partial \log Z_k}{\partial \Sigma_k^{-1}} &= rac{1}{Z_k} rac{\partial Z_k}{\partial \Sigma_k^{-1}} = (2\pi)^{-D/2} \det(\Sigma_k)^{-1/2} (2\pi)^{D/2} rac{\partial \det(\Sigma_k^{-1})^{-1/2}}{\partial \Sigma_k^{-1}} \ &= \det(\Sigma_k^{-1})^{1/2} \left(-rac{1}{2}
ight) \det(\Sigma_k^{-1})^{-3/2} \det(\Sigma_k^{-1}) \Sigma_k^{ op} = -rac{1}{2} \Sigma_k \ &rac{\partial \log L}{\partial \Sigma_k^{-1}} = -\sum_{i=1}^N y_k^i \left[rac{1}{2} \Sigma_k - rac{1}{2} (x^i - \mu_k) (x^i - \mu_k)^{ op}
ight] = 0 \ & \left[\Sigma_k = rac{\sum_{i=1}^N y_k^i (x^i - \mu_k) (x^i - \mu_k)^{ op}}{\sum_{i=1}^N y_k^i}
ight] \end{aligned}$$

Use Lagrange multiplier to derive π_k

$$\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}\log \pi_{j} - \log Z - rac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{k}y_{j}^{i}(x^{i}-\mu_{j})^{ op}\Sigma_{j}^{-1}(x^{i}-\mu_{j})$$

$$rac{\partial L(heta)}{\partial \pi_k} + \lambda rac{\partial \sum_k \pi_k}{\partial \pi_k} = 0 \Rightarrow \lambda = -\sum_{i=1}^N y^i_k rac{1}{\pi_k}$$

$$\pi_k = -rac{\sum_{i=1}^N y_k^i}{\lambda}$$

Apply constraint:
$$\sum_k \pi_k = 1 \Rightarrow \lambda = -N$$
 $\left(egin{array}{c} \pi_k = rac{\sum_{i=1}^N y_k^i}{N} \end{array}
ight)$

```
Naive Bayes Classifier
```


Gaussian Naive Bayes Pipeline

- 1. Build probabilistic models: Gaussian Likelihood
- 2. Derive loss function: MLE or MAP
- 3. Select optimizer: Necessary Condition

Discriminative vs. Generative Classifier

$$P(y|x) = rac{P(x|y)P(y)}{P(x)} = rac{P(x,y)}{\sum_y P(x,y)}$$

Discriminative

Generative

- Directly estimate decision boundary $h(x) = -\ln \frac{q_i(x)}{q_j(x)}$ or posterior distribution p(y|x)
- h(x) or f(x) := p(y = 1|x) is a function of x, and
 - Does not have probabilistic meaning
 - Hence can **not** be used to sample data points

- Estimate the probabilistic generative mechanism P(x|y)P(y)
- Derive decision boundary through Bayes' rule

Discriminative vs. Generative Classifier

Binary Logistic Regression

$$p(y = 1 | x, \theta) = \frac{1}{1 + \exp(-\theta^\top x)}$$
$$p(y = 0 | x, \theta) = 1 - \frac{1}{1 + \exp(-\theta^\top x)} = \frac{\exp(-\theta^\top x)}{1 + \exp(-\theta^\top x)}$$

1

Gaussian
Naive Bayes Classifier
$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x,y)}{\sum_{y} P(x,y)}$$
$$= \frac{P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}{\sum_{y} P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}$$

Posterior of Gaussian Naive Bayes Classifier

$$rac{p(x,y=1)}{p(x,y=0)+p(x,y=1)} = rac{\pi_1\mathcal{N}(x|\mu_1,\Sigma)}{\pi_0\mathcal{N}(x|\mu_0,\Sigma)+\pi_1\mathcal{N}(x|\mu_1,\Sigma)}$$

Posterior of Gaussian Naive Bayes Classifier

$$\begin{split} & \frac{p(x,y=1)}{p(x,y=0)+p(x,y=1)} = \frac{\pi_1 \mathcal{N}(x|\mu_1,\Sigma)}{\pi_0 \mathcal{N}(x|\mu_0,\Sigma)+\pi_1 \mathcal{N}(x|\mu_1,\Sigma)} \\ & = \left\{ 1 + \frac{\pi_0}{\pi_1} \exp\left[-\frac{1}{2} (x-\mu_0)^\top \Sigma^{-1} (x-\mu_0) + \frac{1}{2} (x-\mu_1)^\top \Sigma^{-1} (x-\mu_1) \right] \right\}^{-1} \\ & = \left\{ 1 + \exp\left[\log \frac{\pi_0}{\pi_1} + (\mu_0-\mu_1)^\top \Sigma^{-1} x + \frac{1}{2} (\mu_0^\top \Sigma^{-1} \mu_0 - \mu_1^\top \Sigma^{-1} \mu_1) \right] \right\}^{-1} \\ & = \frac{1}{1+\exp(-\theta^\top x-b)} \end{split}$$

Posterior of Gaussian Naive Bayes Classifier

$$rac{p(x,y=1)}{p(x,y=0)+p(x,y=1)} = rac{\pi_1\mathcal{N}(x|\mu_1,\Sigma)}{\pi_0\mathcal{N}(x|\mu_0,\Sigma)+\pi_1\mathcal{N}(x|\mu_1,\Sigma)}$$

Decision Boundary Gaussian Naive Bayes Classifier

$$p(x, y = 0) = p(x, y = 1) \ \log \pi_1 - rac{1}{2} (x - \mu_1)^ op \Sigma_1^{-1} (x - \mu_1) = \log \pi_0 - rac{1}{2} (x - \mu_0)^ op \Sigma_0^{-1} (x - \mu_0) \ x^ op (\Sigma_1^{-1} - \Sigma_0^{-1}) x - 2 \left(\mu_1^ op \Sigma_1^{-1} - \mu_0^ op \Sigma_0^{-1}
ight) x + \left(\mu_0^ op \Sigma_0^{-1} \mu_0 - \mu_1^ op \Sigma_1^{-1} \mu_1
ight) = C \ \Rightarrow x^ op Qx - 2b^ op x + c = 0$$

The decision boundary is a quadratic function. In 2-d case, it looks like an ellipse, or a parabola, or a hyperbola.

Decision with Bayes' Rule

• The posterior probability of a test point

$$q_i(x):=P(y=i|x)=rac{P(x|y)P(y)}{P(x)}$$

- Bayes decision rule:
 - \circ If $q_i(x) > q_j(x)$, then y=i , otherwise y=j
- Alternatively:

$$\circ$$
 If ratic $l(x)=rac{P(x|y=i)}{P(x|y=j)}>rac{P(y=j)}{P(y=i)}$, then $y=i$, otherwise $y=j$

 \circ Or look at the log-likelihood ratio $h(x) = \ln rac{q_i(x)}{q_j(x)}$

Decision Boundary Gaussian Naive Bayes Classifier p(x, y = 0) = p(x, y = 1) Decision Boundary Gaussian Naive Bayes Classifier

$$p(x, y = 0) = p(x, y = 1) \ \log \pi_1 - rac{1}{2} (x - \mu_1)^ op \Sigma_1^{-1} (x - \mu_1) = \log \pi_0 - rac{1}{2} (x - \mu_0)^ op \Sigma_0^{-1} (x - \mu_0) \ x^ op (\Sigma_1^{-1} - \Sigma_0^{-1}) x - 2 \left(\mu_1^ op \Sigma_1^{-1} - \mu_0^ op \Sigma_0^{-1}
ight) x + \left(\mu_0^ op \Sigma_0^{-1} \mu_0 - \mu_1^ op \Sigma_1^{-1} \mu_1
ight) = C \ \Rightarrow x^ op Qx - 2b^ op x + c = 0$$

The decision boundary is a quadratic function. In 2-d case, it looks like an ellipse, or a parabola, or a hyperbola.

• Depending on the Gaussian distributions, the decision boundary can be very different

• Decision boundary: $h(\mathbf{x}) = -\ln \frac{q_i(x)}{q_j(x)} = 0$

Set of Gaussian Naive Bayes parameters (feature variance independent of class label)

Set of Logistic Regression parameters

Number of parameters

- Naive Bayes: 4D + 1
 - When all random variables are binary
 - \circ 4D + 1 for Gaussians: 2D mean, 2D variance, and 1 for prior
- Logistic Regression: D

 \circ $heta_1, heta_2,..., heta_D$

• where *D* represents the number of features in the input data.

Set of Gaussian Naive Bayes parameters (feature variance independent of class label)

Set of Logistic Regression parameters

- Estimation method:
 - Naive Bayes parameter estimates are decoupled (easy)
 - Logistic regression parameter estimates are coupled (less easy)

Set of Gaussian Naive Bayes parameters (feature variance independent of class label)

Set of Logistic Regression parameters

- Representation equivalence (both yield linear decision boundaries)
 - But only in special case!!! (GNB with class-independent variances)
 - LR makes no assumptions about $P(\mathbf{X}|Y)$ in learning!!!
 - Optimize different functions! Obtain different solutions

- Asymptotic comparison (# training examples \rightarrow infinity)
- When model assumptions correct
 - Naive Bayes, logistic regression produce identical classifiers
 - Naive Bayes converges faster
- When model assumptions incorrect
 - logistic regression is less biased does not assume conditional independence
 - logistic regression has fewer parameters
 - therefore expected to outperform Naive Bayes

Exploration Unlabeled Data

$$egin{aligned} P(y|x) &= rac{P(x|y)P(y)}{P(x)} \ P(x) &= \sum_y P(x|y)P(y) \end{aligned}$$

Exploration Unlabeled Data

MLE

$$P(y|x) = rac{P(x|y)P(y)}{P(x)}$$
 $P(x) = \sum_{y} P(x|y)P(y)$

$$\max_{ heta} \log P_{ heta}(x) = \log \sum_{y} P(x|y) P(y)$$

Exploration Unlabeled Data

$$egin{aligned} P(y|x) &= rac{P(x|y)P(y)}{P(x)} \ P(x) &= \sum_y P(x|y)P(y) = \sum_y P(y)\mathcal{N}(x|\mu_y,\Sigma_y) \ lpha x \log P_ heta(x) &= \log \sum P(x|y)P(y) \end{aligned}$$

MLE

$$\max_{\theta} \log P_{\theta}(x) = \log \sum_{y} P(x|y) P(y)$$

Gaussian Mixture Model!

ML Algorithm Pipeline

General ML Algorithm Pipeline

- 1. Build probabilistic models
- 2. Derive loss function (by MLE or MAP....)
- 3. Select optimizer

