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10.1 Recap

Recall the definition of energy-based model :

Definition 10.1 (Energy-based Model (EBM))

pθ(x) = exp(fθ(x)−A(θ)) (10.1)

A(θ) = log


exp(fθ(x))dx (10.2)

which satisfies Pθ(x) ≥ 1 and

Pθ(x)dx = 1.

We also introduced the conditional EBM :

Definition 10.2 (Conditional Energy-based Model)

pθ(y|x) = exp(fθ(x, y)−Ax(θ)) (10.3)

Ax(θ) = log


exp(fθ(x, y))dy (10.4)

which also satisfies Pθ(y|x) ≥ 1 and

Pθ(y|x)dx = 1.

From the perspective of statistical physics, we define the energy as gθ(x) = −fθ(x). In this notation, a
lower value of g(θ) corresponds to a higher value of fθ(x). Consequently, a higher fθ(x) results in a greater
probability pθ(x), indicating that x is more likely to reside in a low-energy region.

10.2 New Content

10.2.1 Maximum Entropy Model

The maximum-entropy model assumes that the network state probability distribution is given by an ex-
ponential function of the network energy such that entropy is maximized while satisfying any statistical
constraints, i.e.,

max
p∈∆

H(p) = −


p(x) log p(x)dx

s.t. Ep[f(x)] = µ,


p(x)dx = 1

(10.5)
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Therefore, the Lagrangian formulation is

L(p) = H(p)− η(µ− Ep[f(x)])− λ(1−


p(x)dx) (10.6)

with the KKT conditions

∇pL(p,λ) = − log p− 1 + ηf(x) + λ = 0 (10.7)

⇒ log p = 1 + ηf(x) + λ (10.8)


p(x)dx = 1 (10.9)

⇒ exp(λ− 1) =
1

exp(ηf(x))dx = 1
(10.10)

Therefore, the optimizer is in the form of exp(ηf(x))
Z , with Z the partition function, i.e.,

exp(ηf(x))

Z
= argmaxH(p), s.t.Ep[f(x)] = µ (10.11)

10.2.2 Application of EBM

Unsupervised learning. In unsupervised learning, EBMs can be used to capture the structure and patterns
inherent in the input data without any explicit labels. The model tries to learn an energy function where
data points from the true data distribution are given lower energy values, while other points in the data
space receive higher energy values.

Generative models. EBMs can generate new data samples by searching for configurations of the variables
that minimize the energy function. An often-used method with EBMs is the Markov Chain Monte Carlo
(MCMC) method to sample from the model’s distribution.

Conditional models. In conditional modeling, the goal is to learn a mapping from an input space to an
output space. For structured prediction tasks, the output space is often combinatorial, meaning that there
are a large number of possible outputs. EBMs can be designed to take both an input (like an image) and
a potential output (like a caption) and assign an energy value to the pair. During inference, the model can
search for the output that minimizes the energy given the input.

10.2.3 Restricted Boltzmann Machine (RBM)
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X: observables

Z: hidden variables

Figure 10.1: Structure of Restricted Boltzmann Machine

The RBM consists of two layers: a visible layer and a hidden layer. Each node in these layers is called a
neuron or a unit. The ”restricted” in RBM means that there are no intra-layer connections: neurons within
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a layer do not connect with each other. They only connect with neurons in the other layer. Under these
conditions, we can express

p(x, z) ∝ exp(x⊤Wz + bX + Cz) (10.12)

The RBM can be easily extended to its deep version – Deep Boltzmann Machine.

There are several pros & cons for the RBM:

Pros.

• RBM can clearly characterize the relations among variables and thus reveal dependence of x;

• It can represent the compositionality, i.e., the probabilistic logics. For example, let f(x) = fθ1(x)

fθ2(x),

then p(x) = pθ1(x)pθ1(x) ∝ exp(fθ1(x)

fθ2(x)).

Cons.

• RBM is hard to evaluate due to the intractability of partition function Z(θ) =

exp(fθ(x))dx;

• It is also hard to sample, i.e., hard to set appropriate proposals in MCMC;

• It is different to learn.

We note the property of the RBM:

pθ(x)

pθ(x′)
= exp(fθ(x)− fθ(x

′)) (10.13)

which means it is relatively easy to calculate the ratio between the probabilities. We will leverage this point
in the following MCMC design.

MCMC Deisgn. To sample x ∼ p(x) ∝ exp(fθ(x)), we do

x0 ∼ p0(x)
for t = 1 · · ·T do

x = xt

y ∼ q(·|x)
A(x, y) = min( p(y)q(x|y)p(x)q(y|x) , 1)

u ∼ U [0, 1]
if u ≤ A(x, y) then

xt+1 = y
else

xt+1 = x
end if

end for

As we mentioned, it is easy to get pθ(y)
pθ(x)

. Now the question is how to design q(·|x)?

There are several approaches:

• Random walk: y = xt−1 +∆, with∆ ∼ N(0,σ2);

• Langevin dynamics: y = xt−1 + η∇x log pθ(xt−1) +
√
η.

Notably, although ∇θ log pθ(x) is not tractable, ∇x log pθ(x) is.
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10.2.4 Contrastive Divergence (CD)

Contrastive Divergence (CD) is an optimization algorithm primarily used for training Restricted Boltzmann
Machines (RBMs) and other energy-based models. CD approximates the gradient of the log-likelihood and
helps update the model’s parameters to better fit the data. We may look back to the MLE.

Maximum Likelihood Estimation (MLE). Given the dataset D = xi, we do

max
θ

1

n

n

i=1

logPθ(x) = L(θ) =
1

n

n

i=1

fθ(xi)−A(fθ) (10.14)

Taking the gradient of L yields

∇L(f) =
1

n

n

i=1

∇fθ(xi)−∇θA(fθ) (10.15)

where

∇A(fθ) = ∇ log


exp(fθ(x))dx (10.16)

=


exp(fθ(x))∇fθ(x)dx

exp(fθ(x))dx
(10.17)

= Epθ
[∇θfθ(x)] (10.18)

Therefore,

∇∆L(f) = Êx[∇fθ(x)]  
easy to get

− Epθ
[∇θfθ(x)]  

sample to estimate

(10.19)

10.2.5 Score Matching (SM)

Score Matching (SM) is an alternative method to train energy-based models, particularly in situations where
the partition function (normalizing constant) is difficult or impossible to compute directly. The idea behind
Score Matching is to adjust the parameters of the model so that the gradient (or ”score”) of the log-density
of the model matches the score of the data distribution.

We start by introducing the Fisher divergence.

Definition 10.3 (Fisher Divergence)

DFisher(p, q) =
1

2
Ep[∇x log p(x)−∇x log q(x)2] (10.20)

Given pθ(x) =
exp(fθ(x))

Z(θ) , we know that

∇x log pf (x) = ∇fθ(x) (10.21)

Therefore,

Ex∼p̂[(∇x log p̂(x)−∇x log pf (x))
2] (10.22)

=


p̂(x)(∇x log p̂(x)−∇x log pf (x))

2dx (10.23)

=


p(x)(∇x log pf (x))

2dx− 2


p(x)∇ log p(x)∇x log pf (x)dx (10.24)
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where the second term


p(x)∇ log p(x)∇x log pf (x)dx (10.25)

=


∇p(x)∇x log pf (x)dx (10.26)

=p(x)∇x log pf (x)|+∞
−∞−


∇2

x log pf (x)p(x)dx (10.27)

Here we just leveraged the integral by parts, i.e.,
 b

a
u(x)v′(x)dx = [u(x)v(x)]ba −


u′(x)v(x)dx. In (10.27),

the term p(x)∇x log pf (x)|+∞
−∞= 0 under some regulation condition.

Note that a second-order gradient is present in (10.27), which may significantly raise the memory cost for
large-scaled decoding. Therefore, this technique is practically not adopted in LLMs.


