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12.1 Recap

Energy Based Model Topics:

1. Contrastive Divergence: This optimization algorithm approximates the gradient of log-likelihood and
updates parameters of a model to fit the data. It is mainly used for Restricted Boltzmann Machines (RBMs).

2. Score Matching: Other method than maximum likelihood to calculate probability distribution and it
focuses on a non-parametric approach

Autoregressive model vs Restricted Boltzmann Machines (RBMs):

Autoregressive model: A model that learns from a list of timed steps and measurements/observations taken
at each time step to predict the next time step.

Restricted Boltzmann Machines (RBMs): Unsupervised neural network that learns a probability distribution
over a set of input.

Autoregressive model vs RBMs Comparsion:

Autoregressive models RBMs
No clear relationship between variables:∏d

i=1 p(xi|x<i)
Clear relationship between variables
like x and h

Simpler to calculate (use MLE) Harder to solve, need to use an
estimator

Can produce sequences easier Need to iterate many times to get one
sample using MCMC

12.2 New Content

12.2.1 Latent Variable Model (Variational autoencoder)

x is variable we observe, and z is the variable that influences x but we cannot observe z

Z X
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The probability of x (p(x)) is equal to

p(x) =

∫
pθ(x|z)pϕ(z)dz

Energy based models are too simple to model the data. As a result, we use a latent variable model to model
data.

An example of a LVM is the Gaussian Mixture Model

p(x|z)∼N(µz, σz)

Dogs Cats

Dogs and Cats represent clusters. We use a Gaussian model to to group the data into clusters.

12.2.2 Ineffective ways of learning parameters of LVM

We only have x, need to learn z

D={xi}ni=1

Perform MLE:

max
θ,ϕ

1

n

n∑
i=1

log(p(xi))

max
θ,ϕ

1

n

n∑
i=1

log(

∫
pθ(xi|zi) ∗ pϕ(zi)dz)

L(θ, ϕ) = log(

∫
pθ(xi|zi) ∗ pϕ(zi)dz)

Attempt to calculate gradient:

L(θ, ϕ) =
1

n

n∑
i=1

∫
∆θpθ(xi|zi)pϕ(zi)dzi∫
pθ(xi|zi)pϕ(zi)dzi

It is hard to calculate this because it is a ratio between integrals. Additionally, it is difficult to calculate the
unbiased estimator for θ and ϕ

Using Score matching will result in same issue.
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12.2.3 Using Auxiliary function in MLE and ELBO

We will use an auxiliary function to simplify the expression and avoid the ratio of integrals.

log p(x) =

log(

∫
p(x|z)p(z)dz)

q(z|x) is the auxiliary function

log(

∫
p(x|z)p(z)
q(x|z)

q(x|z)dz)

log(Eq(z|x)

[
p(x, z)

q(z|x)

]
)
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y=log(x)

ExpectationLine

We know the expectation of a log function is less than the log value:

E[log(f(z))] ≤ log(E[f(z)])

so we can say

log(Eq(z|x)

[
p(x, z)

q(z|x)

]
) ≥ Eq(z|x)

[
log(

p(x, z)

q(z|x)
)

]
This is called Evidence Based Lower Bound (ELBO). This is a key concept in Variational Bayesian Methods
because it changes intractable inference problems to solvable optimization problems. We continue expanding
this lower bound and use it as an approximation/value for log(p(x)).

To confirm we can use this value in our calculations, we can set q(z|x) = p(x,z)
p(x)

Eq(z|x)

[
log(p(x,z)q(z|x) )

]
= Eq(z|x) [log(p(x))] =

∫
q(z|x)log(p(x))dz = log(p(x))

∫
q(z|x)dz

q(z|x) is a distribution so the integral of it is 1



12-4 Lecture 12: VAE and Diffusion models

log(p(x))
∫
q(z|x)dz = log(p(x))

Using ELBO, log(p(x)) will equal

max
q(z|x)

Eq(z|x)

[
log(

p(x, z)

q(z|x)
)

]

max
q(z|x)

Eq(z|x) [log(p(x, z))− log(q(z|x))]

max
q(z|x)

Eq(z|x) [log(p(x, z))]−
∫

q(z|x)log(q(z|x))

max
q(z|x)

Eq(z|x) [log(p(x, z))]−H(q)

where H(q) =
∫
q(z|x)log(q(z|x)) and represents entropy

12.2.4 Adding λ Parameter to MLE

Recall that the original MLE equation is

max
θ,ϕ

1

n

n∑
i=1

log p(xi)

The MLE equation can be redefined with a new objective function such that we have the following equation:

max
θ,ϕ

max
q(z|x)

1

n

n∑
i=1

Eq(z|x)

[
log

pθ(x|z)pϕ(z)
q(z|x)

]
The reason q is used is that it helps to estimate the gradient that updates model parameters during the
training process. A new parameter λ defines the q function, which can also be learned in training, and the
MLE function is now

max
θ,ϕ

max
λ

1

n

n∑
i=1

Eqλ(z|x)

[
log

pθ(x|z)pϕ(z)
qλ(z|x)

]
where the likelihood L(θ, ϕ, λ) is given by

1

n

n∑
i=1

Eqλ(z|x)

[
log

pθ(x|z)pϕ(z)
qλ(z|x)

]

Now, to update each of these parameters via gradient descent, the gradient with respect to each of these
parameters must be calculated individually. Once the gradient is found, MC approximation or gradient
descent can be used to get an unbiased estimator that updates the parameter.

Gradient w.r.t θ:

∇θL(θ, ϕ, λ) =
1

n

n∑
i=1

Eq(z|x) [∇θ log pθ(x|z)]
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Gradient w.r.t. ϕ:

∇ϕL(θ, ϕ, λ) =
1

n

n∑
i=1

Eq(z|x) [∇ϕ log pϕ(z)]

This gradient w.r.t. λ is derived with the following steps:

Eqλ(z|x) [− log(qλ(z|x))]

= ∇λ

∫
qλ(z|x)(− log(qλ(z|x)))dz

= −
∫

∇λqλ(z|x) log(qλ(z|x))dz −
∫

qλ(z|x)(−∇λ log(qλ(z|x))dz

The right side becomes 0 the integral of the distribution is 1, and taking the derivative of that is 0. The left
side is reduced with the following steps:

−
∫

∇λqλ(z|x) log(qλ(z|x))dz

= −
∫

∇λqλ(z|x)
qλ(z|x)

qλ(z|x) log(qλ(z|x))dz

= −
∫

∇λ log(qλ(z|x))qλ(z|x) log(qλ(z|x))dz

= −Eqλ(z|x) [(∇λ log(qλ(z|x))) log(qλ(z|x))]

Thus, the gradient w.r.t. λ is:

∇λL(θ, ϕ, λ) = Eqλ(z|x)

[
∇λ log(qλ(z|x)) log

pθ(x|z)pλ(z)
qλ(z|x)

]

The VAE model relies on random sampling from a distribution determined by the θ, ϕ and λ parameters.
However, when backtracking to update parameters with the gradients found above, it is not possible to
perform this update on all of the parameters due to the random sampling. Thus, the parametrization trick
is introduced.

12.2.5 Reparametrization Trick for Backpropagation

This method involves parametrizing how z is sampled. A new function z = T (x, ε, λ) is defined where T is
the equivalent of random sampling that allows for backpropagation through all of the parameters. x is the
input, λ is the parameter, and ε is the noise. It is also know that q ∼ p0(q). Then, the MLE equation can
be modified once again:

max
θ,ϕ

max
λ

1

n

n∑
i=1

Eqλ(z|x) [log p(x, z)− log qλ(z|x)]

= Ep0(ε) [log p(x, T (x, ε, λ))− log p0(T (x, ε, λ))]

= Eε [∇λ log p(x, T (x, ε, λ))−∇λ log p0(T (x, ε, λ))]
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12.2.6 Denoising Diffusion Process with VAE

A noise vector zm can be reconstructed into an image by using a VAE to denoise the vector. This process
is represented with the following graph where zm is the original noisy vector and the latent variables zm−1

to z1 remove noise to create x:

zm zm−1

...

z1 x

The latent variable model is

p(x) =

∫
p(x|z)p(z)dx

=

∫
p(x|z1)p(z1|z2)...p(zm−1|zm)p(zm)dz1...m

This p(x) is not a diffusion model yet, but a special parametrization based on ELBO is used to make it a
diffusion model:

Eq(z1...m|x)

[
log

p(x, z1...m)

q(z1...m|x)

]

q(z1...m|x) =
n∏

i=1

q(zi+1|zi) where q(zi+1|zi) = N (
√

1− βizi, βi)

p(zi|zi−1) = N (µ(zi+1, i+ 1), ηi+1I)

zi+1 =
√

1− βizi + εi where εi ∼ N (0, βiI)

This topic is covered more in-depth in Lecture 13.


