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13.1 New Content

There is a long history and progress of generative modelling, and here are some specific examples of the
approaches:

• Variational Autoencoders [1]

• Generative Adversarial Networks [2]

• PixelCNN [3]

• BigGAN [4]

• Imagen [5]

But we can categorize deep generative models into Variational Autoencoders, Autoregressive Models, Normal-
izing Flows, Energy-Based Models, and finally, diffusion models. We are going to cover the latter throughout
this lecture note.

Before diving into the technical details, these models are widely used in applications such as AI video
generation, super-resolution, inpainting, AI art, etc.

13.1.1 Recap of Variational Autoencoders

Variational autoencoder is a latent variable model where we aim to model an observed target distribution
p(x), assuming we have a hidden distribution, referred to as latent variables, denoted as p(z). We assume
that there is a mapping from z to x.

z ∼ N (z; 0, I) (13.1)

p(x|z) = N (x;f(z)) (13.2)

p(x) =



z

p(x|z)p(z)dz (13.3)

However, the difficulty lies in the optimization, as the marginal likelihood p(x) is intractable. Therefore, we
cannot optimize it directly using maximum likelihood.
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Instead, we introduce an inference model q(z|x), enabling us to efficiently optimize the log-likelihood through
the Evidence Lower Bound (ELBO).

log(p(x)) ≥ ELBO(x) = Eq(z|x)log
p(x, z)

q(z|x) (13.4)

Hence, we optimize q(z|x) and p(x, z) jointly with respect to ELBO.

Flat VAEs suffer from simple priors; hence, better likelihoods are achieved with hierarchies of latent variables.
However, there are some challenges with VAEs:

• Optimization can be challenging for large models.

• The ELBO enforces an information bottleneck at the latent variables ’z’, which are typically low-
dimensional. This makes VAE optimization prone to bad local minima.

• Posterior collapse is a dreaded bad local minimum where the latents do not transmit any information.

13.1.2 Denoising Diffusion Models

Denoising diffusion models consist of two processes:

• Forward Diffusion: Here, given a data point sampled from a real data distribution, x0 ∼ q(x0), the
forward diffusion process is defined as the addition of a small amount of Gaussian noise to the sample
in T steps, producing a sequence of noisy samples x1, · · · ,xT . Note that the variance schedules are
predefined and denoted with {βt ∈ (0, 1)}Tt=1. The inference distributions are as follows:

q(xt|xt−1) = N (xt;

1− βtxt−1,βtI) (13.5)

q(x1:T |x0) =

T

t=1

q(xt|xt−1) (13.6)

, which are similar to the inference model in hierarchical VAEs. To sample a noisified version of the
original image at timestep t, denoted with xt, we can perform the following operations to obtain the
equation for sampling:

xt =
√
αtxt−1 +

√
1− αtt−1 (13.7)

=
√
αtαt−1xt−2 +


1− αtαt−1t−2 (13.8)

= ... (13.9)

=
√
ᾱtx0 +

√
1− ᾱt (13.10)

αt = 1− βt, ᾱt =

T

t=1

αt (13.11)

Note that the schedules are designed such that q(xT |x0) ≈ N (xT ;0, I)

• Reverse Diffusion: Here, if we reverse the above process and iteratively sample using q(xt−1|xt)
starting from xT ∼ N (xT ;0, I), we will be able to reconstruct the true sample from Gaussian noise
input. However, the term q(xt−1|xt) is intractable. So, to approximate it, we can use a normal
distribution if βt is small in each forward diffusion step.
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For approximation, we define a trainable network, typically chosen as the U-net architecture and
parametrized with θ:

p(xT ) = N (xT ;0, I) (13.12)

pθ(x0:T ) = p(xT )

T

t=1

pθ(xt−1|xt) (13.13)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (13.14)

This is similar to the generative model in hierarchical VAEs. To perform training, we use the ELBO
term and lower bound the objective as follows:

− log pθ(x0) ≤ − log pθ(x0) +DKL(q(x1:T |x0)pθ(x1:T |x0))

= − log pθ(x0) + Ex1:T∼q(x1:T |x0)[ log
q(x1:T |x0)

pθ(x0:T )/pθ(x0)
]

= − log pθ(x0) + Eq[ log
q(x1:T |x0)

pθ(x0:T )
+ log pθ(x0)]

= Eq[ log
q(x1:T |x0)

pθ(x0:T )
]

LV LB = Eq(x0:T )[ log
q(x1:T |x0)

pθ(x0:T )
] ≥ −Eq(x0) log pθ(x0)

where if we plug into the terms that we found in the forward diffusion section, we get the following
variational lower bound loss function:

LV LB = LT + LT−1 + · · ·+ L0

where LT = DKL(q(xT |x0)  pθ(xT ))

Lt = DKL(q(xt|xt+1,x0)  pθ(xt|xt+1)) for 1 ≤ t ≤ T − 1

L0 = − log pθ(x0|x1)

Note that every KL term in the variational lower bound (VLB) compares two Gaussian distributions, hence
they can be computed in closed form. In the DDPM [6] paper, simply setting the coefficient for each loss
term yields the following loss function:

Lsimple = Ex0∼q(x0),∼N (0,I),t∼U(1,T )− θ(
√
ᾱtx0 +

√
1− ᾱt, t)2 (13.15)

Note that our model takes two inputs, the noisy image at timestep t, xt and t itself. And it learns to produce
the corresponding noise vector.

13.1.3 Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs. However, in diffusion models:

• The inference model is fixed, easier to optimize

• The latent variables have the same dimension as the data

• The ELBO is decomposed to each time step: fast to train

• The model is trained with some reweighting of the ELBO.
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13.1.4 Continuous-time diffusion models

So far, we have worked with the discrete-time interpretation of diffusion models. What if we consider the
limit of many small steps and model it as a stochastic differential equation?

xt =

1− βtxt−1 +


βtN (0, I) (13.16)

xt =

1− β(t)∆txt−1 +


β(t)∆tN (0, I) (13.17)

xt ≈ xt−1 −
β(t)∆t

2
xt−1 +


β(t)∆tN (0, I) (13.18)

dxt = −1

2
β(t)dtxt +


β(t)dwt (13.19)

which is the formulation of the forward diffusion SDE. It’s reversal can be found as

dxt = [−1

2
β(t)xt − β(t)∇xt log qt(xt)]dt+


β(t)dw̄t (13.20)

which was formulated in [7] by Anderson, 1982.

β(t)dw̄t term is the diffusion term and ∇xt

log qt(xt) is the
score function. Now the idea is to learn a model to diffuse individual data points and perform denoising score
matching, where the neural network model learns to predict the score function of the inference distribution.
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