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16.1 Recap

EBM: Energy-based Model:
exp(g0|x)

Z0
, Z0 =


exp(g0|x)

Autoregressive model (combine Transformer in ChatGPT):

P

{xi}di=1


=

d

i=1

P (xi|x<i)

This model generates probabilities at a location as a function of all the values before it.

VAE (latent model):

Pθ(x) =


Pθ(x|z)P (z)dz,

Here, we explicitly find the latent space and classify each data point by generating a probability through
integration over the whole latent space.

Diffusion model (image/video modeling):

Pθ(x) =


Pθ (x|z0)

k

i=1

p (zi−1|zi) dzki=0

We combine aspects of VAEs and autoregressive models by generating probabilities through integrating
across all paths of diffusion timesteps

16.2 New Content

16.2.1 Generative Adversarial Net(GAN)

Generative Adversarial Net(GAN) learns samplers instead of explicitly learning distribution. This could be
turned to

ε ∼ P (ε), N

0, θiI


|x = gθ (εi)
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which generates samples as a function of random noise .

Objective function: Represents a generator network trying to minimize loss and discriminator network trying
to maximize loss.

min
θ

max
φ

L(θ,φ) = EPd
[logDφ(x)] + Ex=gθ(x)[log (1−Dφ(x))] ← MLE for logistic regression

Step 1. Fix a φ and maxDφ(x)L(φ, θ) when ∇Dφ(x)L(φ, θ) = 0

⇒ ∀x calculate
∇Dφ(x) (Pd(x) · logDφ(x) +Dgθ (x) · log (1−Dφ(x)))

=Pd(x) ·
1

Dφ(x)
− Pgθ (x) ·

1

1−Dφ(x)
= 0

Then,

Dφ(x) =
Pd(x)

Pd(x) + Pgθ (x)

Step 2. Find the optimal θ under fixed φ.

We put the φ into the objective function.

L (θ,φ∗) = EPd
[log ·D∗(φ)] + EPgθ


log


1−D∗

φ(x)


=


Pd(x) · log

Pd(x)

Pd(x) + Pgθ (x)
dx+


Pgθ (x) · log

Pgθ (x)

Pd(x) + Pdθ
(x)

dx

∝ 2JS (Pd · Pgθ ) + const

Recall Jensen -Shannon divergence

JS(p, q) =
1

2
KL


pp+ q

2


+

1

2
KL


qp+ q

2



Generator’s goal is to minimize this divergence by recovering the original data distribution.

Algorithm.

Init x = gθ0 (εi)

For i = 1, . . . , T

1. Sample x ∼ Pd – take instance of real data

2. Sample x′ = gθ(ε), εi ∼ P0(ε)

3. For k = 1, . . . ,K, φk+1 : φk + ηk∇̂φL(θ,φ) – gradient descent on φ

4. θt+1 = θt − λt∇̂φL (θ,φk) – gradient descent on θ. Note that we don’t update θ every time we update
φ, as the two networks are adversaries, and so we need to make sure we don’t simply make one better
by weakening the other.

Based on JS-Divergence, we also call above algorithm as JS -GAN (minimizing JS divergence)
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16.2.2 Introduction to f-GAN (min f divergence)

Recall f divergence:

Df (p, q) = Eq


f


p

q


=


q(x)f


p

q


dx

where f(·) is a convex function, f(1) = 0.

Choice for f(·).

• KL-divergence

f(a) = a · log a → Df (p, q) =


q(x) · p(x)

q(x)
· log p(x)

q(x)
· dx

=


p(x) · log p(x)

q(x)
dx

• χ2-divergence

f(a) = (a− 1)2, Df (p, q) =


q(x)


p(x)

q(x)
− 1

2

dx

=


q(x)


p(x)

q(x)

2

− 2
p(x)

q(x)
+ 1


dx

=


q(x)


p(x)

q(x)

2

dx−


2 · p(x)dx+


q(x)dx

  
=−2+1=−1

=


q(x) ·


p(x)

q(x)

2

dx− 1

• TV

f(a) = |a− 1|, Df (p, q) =


|p(x)− q(x)|dx

We have several background knowledge for f -GAN:

(1) f(·) convex

(2) The convex conjugate of a function satisfies the property f ∗∗(x) = f(x). The convex conjugae is defined
as f(x) where

f∗(y) = sup
x∈Ω


x⊤y − f(x)



e.g.

f(x) =
1

2
x2, f∗(y) = sup

x
x⊤y − 1

2
x2 = y⊤y − 1

2
y⊤y =

1

2
y⊤y

x∗ = y

f(x) = log

n

i=1

exp (xi) f∗(y) =

n

i=1

yi log yi

Using the second property:
(f∗)

∗
x = f(x) ⇒ f(x) = max

y
y⊤x− f∗(y)
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using convex conjugate in f -GAN

Df (p, q) =


q(x) · f


p(x)

q(x)


dx =


q(x) sup

yx


yx⊤x− f∗ (yx)


dx

denote yx = y(x), then

= max
y(x)


q(x)


y(x)⊤

p(x)

q(x)
− f∗(y(x))


dx

= max
y(x)


y(x) · p(x)dx−


q(x) · f∗(y(x))dx



= max
D(x)

Ep(x)[D(x)]− Eq(x) · [f∗(D(x))]

16.2.3 Connection between EBM and GAN

EBM:

Pφ(x) =
exp (Dφ(x))

z(φ)
⇒ MLE = EPx

[Dφ(x)]− log z(φ), z(φ) =


exp(Dφ(x)dx

Apply log and rewrite z(φ),

log z(φ) = log


exp (Dφ(x)) dx = sup

q
〈q(x) ·D(x)〉 −


q(x) · log q(x)dx

  
+H(q)

using convex conjugate property

Then
MLE = max

φ
min
q

EPd
[D(x)]− Eq[D(x)]−H(q)

where H(q) is entropy.


