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17.1 Recap

GANs.

Sample generator:
ϵ ∼ ρθ(ϵ)

x = Gθ(ϵ)
(17.1)

Loss function:
min
G

max
D

Ex[logD(x)] + Eϵ∼ρθ(ϵ)[log(1−D(G(ϵ))] (17.2)

where G(·) denotes the generator and D(·) denotes the discriminator.

GANs do not require the computation of probability of x. Today, we introduce Normalizing Flows, which
enable the calculation of probability.

17.2 New Content

17.2.1 Basic: Change of Variable Theorem

Given ϵ ∈ R, x = G(ϵ), ϵ = G−1(x). The function G(·) is invertible. We can obtain :

p(ϵ)dϵ = p(G−1(x))d(G−1(x))

= p(G−1(x))(G−1(x))
′
dx

(17.3)

Now the question is how to infer the unknown probability density function of x?∫
p(ϵ)dϵ =

∫
p(x)dx = 1

p(x) = p(G−1(x))
∣∣∣(G−1(x))

′
∣∣∣ (17.4)

The multivariable version has a similar format:

p(x) = pθ(G
−1(x))

∣∣∣∣det ∂G−1

∂x

∣∣∣∣ (17.5)

where det ∂G−1

∂x is the Jacobian determinant of the function G−1(·).
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17.2.2 Normalizing Flows

Given ϵ ∈ ρθ(ϵ), x = Gθ(ϵ),

p(x) = pθ(G
−1
θ (x))

∣∣∣∣det ∂G−1
θ

∂x

∣∣∣∣ (17.6)

To ensure that we can calculate p(x), these four conditions should be satisfied:

[Condition 1] G−1(·) exists. The function G(·) is invertible.

[Condition 2]
∣∣∣det ∂G−1

θ

∂x

∣∣∣ ̸= 0.

[Condition 3] The Jacobian determinant in [Condition 2] need to be easy to compute to decrease the
computational cost. For example, the determinant of the diagonal matrix is equal to the product of its
diagonal elements

[Condition 4]: x = Gθ1Gθ2 ...Gθk . If any of Gθ1 ...Gθk satisfy [Condition 1] and [Condition 2], then
the composite function Gθ1Gθ2 ...Gθk will also fulfill [Condition 1] and [Condition 2].

To maximize the log-likelihood, in this case we have:

max
θ

log pθ(x) = max
θ

1

n

n∑
i=1

log pθ(xi)

= max
θ

1

n

n∑
i=1

(log pθ(G
−1
θ (xi)) + log

∣∣∣∣det ∂G−1
θ

∂xi

∣∣∣∣)
(17.7)

Comparison with GAN:

There is a delicate balance between the simplicity and the potency of the learning process.

1. When it comes to learning complex data distributions, GANs have demonstrated exceptional results,
albeit with stability issues during the learning process.

2. On the other hand, Normalizing flows, due to their inherent constraints, offer more stability than
GANs. However, these constraints could potentially result in less flexibility.

There are several concrete examples of Normalizing flows. For all the examples below, we have the assumption
that x ∈ Rd, and ϵ ∈ Rd.

17.2.3 Linear Flows

Linear mappings can express correlation between dimensions, A ∈ Rd×d:

x = Aϵ+ b (17.8)

To satisfy the [Condition 1] and [Condition 2] mentioned in section 17.3.1:

A ̸= 0. A−1 ̸= 0. If A is an invertible matrix, the function is invertible.
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If A is diagonal with nonzero diagonal entries, then its inverse can be computed in linear time and its
determinant is the product of the diagonal entries.

|detA−1|= |detUλ−1V−1|= (

n∏
i=1

|λi|)−1 (17.9)

where U,V ∈ Rd×d. λ is the diagonal matrix. And A = UλV−1. The result is an elementwise transforma-
tion and hence cannot express correlation between dimensions.

17.2.4 Planar Flows

Planar flows expand and contract the distribution along certain specific directions and take the form

x = ϵ+ uh
(
wTx+ b

)
(17.10)

where Gθ(ϵ) = uh
(
wTx+ b

)
. u,w ∈ Rd×d and b ∈ R are parameters.h : R → R is a smooth non-linearity.

The Jacobian determinant is

det

∣∣∣∣∂G∂ϵ
∣∣∣∣ = det

∣∣I+ uh′ (wT ϵ+ b
)
wT

∣∣
= |det(I+ auwT )|
= |1 + awTu|

(17.11)

where a = h′ (wT ϵ+ b
)
∈ R. And awTu ̸= 1. uh

(
wTx+ b

)
can be understood as a hidden layer that

contains only one unit. A substantial number of planar flows can be stacked to achieve high expressivity.

17.2.5 NICE (Non-linear Independent Component Estimation)

The transformation in NICE is the affine coupling layer without the scale term, known as additive coupling
layer. the input dimensions are split into two parts:{

ϵ1 = x1

ϵ2 = x2 −mθ(x1)
⇔

{
x1 = ϵ1
x2 = ϵ2 +mθ(ϵ1)

(17.12)

where ϵ1 ∈ Rd1 , ϵ2 ∈ Rd2 . And x1 ∈ Rd1 , x2 ∈ Rd2 . d1+d2 = d. d1+d2 = d. m(·) is a scale and translation
function. The Jacobian determinant is

det

∣∣∣∣∂G−1(x)

∂x

∣∣∣∣ =
[

∂ϵ1

∂x1

∂ϵ1

∂x2
∂ϵ2

∂x1

∂ϵ2

∂x2

]
=

[
I 0

−mθ′(x1) I

]
= 1 (17.13)

17.2.6 RealNVP (Real-valued Non-Volume Preserving)

RealNVP employs a normalizing flow by sequentially stacking a series of reversible bijective transformation
functions. Similar to NICE, the input dimensions are divided into two sections.

{
ϵ1 = x1

ϵ2 = x2 −mθ(x1)⊙ exp(−sϕ(x1))
⇔

{
x1 = ϵ1
x2 = ϵ2 ⊙ exp(sϕ(x1)) +mθ(ϵ1)

(17.14)
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where ϵ1 ∈ Rd1 , ϵ2 ∈ Rd2 . And x1 ∈ Rd1 , x2 ∈ Rd2 . d1 + d2 = d. s(·) and m(·) are scale and translation
functions. The ⊙ operation is the element-wise product. The Jacobian determinant is

det

∣∣∣∣∂G−1(x)

∂x

∣∣∣∣ =
[

∂ϵ1

∂x1

∂ϵ1

∂x2
∂ϵ2

∂x1

∂ϵ2

∂x2

]
=

[
I 0

−mθ′(x1) exp(sϕ(ϵ1))

]
(17.15)

17.2.7 Residual Flows

Residual Flows combines NICE and RealNVP. To be specific,

x = ϵ+mθ(ϵ) (17.16)

The Jacobian determinant is∣∣∣∣det ∂G∂ϵ
∣∣∣∣ = |det(I+mθ′(ϵ))|

log

∣∣∣∣det ∂G∂ϵ
∣∣∣∣ = log |det(I+mθ′(ϵ))|

≈
∞∑
k=1

(−1)k+1Tr(mθ′(ϵ))k

k
(Taylor Approx.)

(17.17)

where k = 1 or 2 in practise.


