
CSE6243: Advanced Machine Learning Fall 2023

Lecture 19: Differentiable Algorithm II: Top-K/Sorting Layer
Lecturer: Bo Dai Scribes: Zachary Aristei

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 Recap and Overview

So far, this class has covered the following differentiable models in previous lectures:

1. Auto-Regressive Model as Differentiable Gibbs Sampler (Covered in Module 1)

2. Graph Neural Network (GNN) and Value Iteration Network (VIN) as Differentiable Dynamic Pro-
gramming (Covered in Lecture 18)

3. Differentiable Searching (Covered Today)

4. Differentiable Convex Optimization (Dropped due to time constraints).

19.2 New Content

19.2.1 Motivating Example

The following optimization problem serves as a motivating example for why Differentiable Searching becomes
useful in a Machine Learning context:

P (y1, · · · , yt) = ΠT
t=1(P (yt|y<t) (19.1)

This joint distribution is often optimized in the context of current state-of-the-art autoregressive and Large
Language Models. Let Y := [y1, · · · , yt]T . In order to generate a sentence from a LLM model trained on this
joint word distribution, it is necessary to maximize the joint distribution above using the following objective:

max
Y

logP (Y) = max
Y

T∑
t=1

logP (yt|y<t) (19.2)

For an simpler example with 2 words, this can be represented as:

max
y1,y2

logP (y1) + logP (y2|y1)

19-1

19-2 Lecture 19: Differentiable Algorithm II: Top-K/Sorting Layer

In order to maximize this distribution, there’s no efficient dynamic programming approach that’s available
that eliminates the need to compute a joint distribution conditioned on each word of the sequence. Hence
we will find that there exists a need to differentiably approximate a search procedure to search for the top-k
elements that maximize the joint distribution.

19.2.2 Search Heuristics

19.2.2.1 Greedy Search

In order to maximize this distribution, we will employ a greedy search for the argmax of each token position
in the distribution.

Let Y := {y| y ∈ N}, |Y|= n represent a finite set of discrete output tokens that are possible outputs to the
model.

Algorithm 1 Greedy Search

Y ← ∅
t← 1
while t ≤ T do

Y [t]← argmax [logP (Y [t] | Y)]
end while
return Y

This algorithm has a critical issue. The inputs are generated entirely conditioned on the distribution of the
earlier positioned tokens that get generated. This may not arrive at the maximum distribution because the
earlier tokens are maximized from distributions that are not conditioned on the optimal tokens later in the
sequence. Thus in order to resolve this issue, one must maximize conditioned on all the permutations of
tokens possible, which is an intractable problem.

19.2.2.2 Beam Search

Proposal: Instead of greedily finding the top 1 choice at each step, search for the top k choices at each
step, conditioned on all of the top k maximized joint distributions from the previous step.

When this algorithm is complete, Ȳ = [Y ∗
T1, · · · , Y ∗

Tk]
T represents sequences associated with the top k joint

distributions of length T that have been found through the traversal of the sequence-space.

Algorithm 2 Beam Search

Ȳ : |Ȳ |= k
Ȳ ← ∅
t← 1
while t ≤ T do

Y ∈ Rk×k

while i := 1, . . . , k do
Y[i]← argmaxtop k [logP (Y [t] | Ȳi)]

end while
Ȳ ← argmaxtop k entries Y

end while
return Ȳ

Lecture 19: Differentiable Algorithm II: Top-K/Sorting Layer 19-3

y11
...
yk1

...

y11y
1
2

...
y11y

k
2

yk1y
1
2

...
yk1y

k
2

y∗1
...
y∗k

k × kk top-k

Ȳ

Repeat T times

t = T

Figure 19.1: Beam Search Diagram

Beam search represents the de-facto state-of-the-art algorithm for parsing the permutations of tokens in
search for the optimized combination for the joint probability. However, it is worth noting that this algorithm
still only yields approximation, as searching through all T × |Y| sequences for the Top-k is an NP-hard
problem.

19.2.3 Differentiating Top-K

19.2.3.1 Defining the Optimization Problem

When it comes to training models that rely on finding the top-k entries, another problem presents itself in
that the argmax operator is not differentiable. Thus an approximation must be derived in order to be able
to have a top-k model in which ∇θL(Ȳ) can be evaluated.

This approximator will be optimize the following objective:

max
Γ≥0

< Γ, C > (19.3)

s.t. Γ1m = µ (19.4)

ΓT1n = ν (19.5)

Proposition 19.1 The solution to the above optimization problem can be formulated as the Top-K when the

19-4 Lecture 19: Differentiable Algorithm II: Top-K/Sorting Layer

following is true:

µ :=
1n

n
∈ Rn (19.6)

ν := [
k

n
,
n− k

n
]T ∈ R2 (19.7)

C ∈ Rn×2 (19.8)

∀i, Ci1 = x2
i , Ci2 = (xi − 1)2 (19.9)

Proof: We start by expanding the objective function:

< C,Γ > =

n∑
i=1

x2
iΓi1 + (xi − 1)2Γi2

=

n∑
i=1

x2
i (Γi1 + Γi2) + Γi2 − 2xiΓi1

=
1

n

n∑
i=1

x2
i +

n− k

n
− 2

n∑
i=1

xiΓi2

The constraints can also be modified:

(19.4), (19.6)⇒ Γ1m =
1n

n

⇒ ∀i, Γi1 + Γi2 =
1

n
⇒ ∀(i, j), Γij ≥ 0

(19.5), (19.7)⇒ ΓT1n = [
k

n
,
n− k

n
]T

⇒
n∑

i=1

Γi1 =
k

n

⇒
n∑

i=1

Γi2 =
n− k

n

Thus maximizing (19.3) is functionally equivalent optimizing this objective:

min
Γ≥0

n∑
i=1

xiΓi2 (19.10)

s.t.

n∑
i=1

Γi2 =
n− k

n
(19.11)

Γi2 ≤
1

n
∀i (19.12)

Based on this new objective, we know that for optimum Γ∗:

Γ∗
i1 =

{
1
n i in top k

0 otherwise
(19.13)

Lecture 19: Differentiable Algorithm II: Top-K/Sorting Layer 19-5

19.2.3.2 Finding the Optimal Γ∗

With the optimization problem defined, the loss function L(Γ, C) can be defined based on (19.3). However,
this problem is not differentiable as-is. So, a regularization term (such as the cross-entropy H(Γ)) needs to
be added to ensure the function remains smooth across the domain:

Lλ(Γ, C) = argmax
Γ≥0

< Γ, C >+ λH(Γ) (19.14)

By evaluating ∂Lλ

∂Γ , we can derive the gradient descent update for finding Γ∗, with the help of KKT conditions:

Let f(Γ, C) := Γ∗ = min
Γ
L(Γ, C) + λΩ(Γ1n − µ) + ηΩ(ΓT1n − ν) (19.15)

Γi+1 = Γi − εi∇Γf(Γ, C) (19.16)

19.2.4 Key Takeaway

The approach used here for Top-K approximation can be generalized to many other non-differentiable prob-
lems. More specifically, the procedure outlined here involves:

1. Formulate the problem as a constrained optimization problem with an objective function that can be
optimized using KKT conditions.

2. Add a regularization parameter such as Entropy or Expectation to enable enough smoothing to make
the objective differentiable across the entire domain.

