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21.1 Recap

1. Reinforced Learning VS Supervised Learning: Reinforcement learning differs from supervised
learning in a way that in supervised learning a mapping from X to Y is learned and the distribution
remains fixed whereas in reinforcement learning, a policy is learned and the distribution changes
according to your learning.

2. Bellman Optimal Equation for Q∗ and V ∗:

(a) Q∗(s, a) = R(s, a) + γEs′∼p(·|s,a)[V
∗, s′]:

(b) V ∗(s) = maxa (R(s, a) + γEs′∼p(·|s,a)[V
∗, s′])

3. Policy Evaluation VS Policy Optimization: In policy evaluation, we are given a policy π and we
need to estimate V (π) or Q(π) whereas in policy optimisation, we are not given a policy π and we need
to estimate an optimal π∗

4. Planning VS Learning: In planning, we have access to the transition probability and the reward
function whereas in learning we don’t, in short learning is going from experience to a policy, whereas
planning is going from a model to a policy.

21.2 New Content

We have previously seen two algorithms designed to handle planning in the context of policy optimisation.
We have assumed that the environment model is known. That is, the transition probability p(a|s, a) and the
expected reward E[r(s, a)] for all s, s’ ∈ S and a ∈ A are assumed to be given.

21.2.1 Value Iteration

In value iteration, we compute the optimal state value function by iteratively updating the estimate V (s):
the new values of V(s) are determined using the Bellman equations and the current values. This process is
repeated until a convergence condition is met.

We start with a random value of function V(s). At each step we update it:

V (s) = max
a

∑
s′,r′

p(s′, r|s, a)[r + γV (s′)]
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Value Iteration converges to the optimal value function V ∗(s) as k → ∞.

Theorem 21.1. The Value Iteration algorithm ran for k iterations with discount rate γ converges at a rate:

∥V ∗ − Vk+1||∞≤ γk

1− γ
Rmax (21.1)

where R(s, a) ≤ Rmax ∀s,∀a.

Proof. To prove this property, we need the following proposition:

Proposition 21.2. ϕ(·) is γ - contractive; a type of function or operator that contracts distances between
points in a specific way. ϕ() is said to be γ-contrastive if ∀x, y ∈ dom(ϕ), the following holds:

d(ϕ(x), ϕ(y)) ≤ γd(x, y)

By definition: πV (a|s) = argmaxπ Φ(V ). Using the property |maxa f(a)−maxa g(a)| ≤ maxa|f(a)− g(a)|
(Proof in Mohri et al, 2018), we can show:

Φ(V )− Φ(U) ≤ Φ(V )−
∑
a

πV (a|s)(R(s, a) + γPU)

= ⟨πV (a|s), R(s, a) + γPV ⟩ − ⟨πV (a|s), R(s, a) + γPU⟩
= ⟨πV (a|s), γP (V − U)⟩

=
∑
s′

∑
a

γπV (a|s)p(s′|s, a)(V (s′)− U(s′))

≤ γ∥V − U∥∞

where in the last step we use the Cauchy–Schwarz inequality. Next we want to quantify this results

∥V ∗ − Vk+1∥∞ ≤ ∥V ∗ − Φ(Vk+1)∥∞+∥ϕ(Vk+1)− Vk+1∥∞ (triangle inequality)

= ∥Φ(V ∗)− Φ(Vk+1)∥∞+∥ϕ(Vk+1)− Φ(Vk+1)∥∞
...

≤ γk

1− γ
∥V1 − V0∥∞ (telescoping sum)

=
γk

1− γ
Rmax

21.2.2 Policy Iteration

In policy iteration, we start by choosing an arbitrary policy π. Then, we iteratively evaluate and improve the
policy until convergence:

We evaluate a policy π(s) by calculating the state value function V(s):

V (s) =
∑
s′,r′

p(s′, r|s, π(s))[r + γV (s′)]
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Then, we calculate the improved policy by using one-step look-ahead to replace the initial policy π(s):

π(s) = argmax
a

∑
s′,r′

p(s′, r|s, a)[r + γV (s′)]

Theorem 21.3. Denote Uk
K
k=1 and Vk

K
k=1 as the value estimates of Value Iteration and Policy Iteration

respectively. If U0 = V0 then

Uk ≤ Vk ∀k ∈ 0, 1, ..,K (21.2)

In other words, Policy Iteration converges at at least the same rate as Value iteration (but can be better!). In
order to prove this, we first need:

Proposition 21.4. V πk → V ∗ as k → ∞

Proof. Using the fact that if V ′ ≥ V , then Φ(V ′) ≥ Φ(V ):

V πk ≤ Φπk+1(V πk) (21.3)

≤ (Φπk+1)2(V πk) (21.4)

... (21.5)

lim
n→∞

≤ (Φπk+1)n(V πk) (21.6)

= V πk+1 (21.7)

Where the last line comes from the fact that γn → 0 as n → ∞. See proof of Lemma 4.1 in Mathematical
Foundations of Reinforcement Learning

Now we can return to prove Theorem 21.3:

Proof. First we need to show that Φ is monotonic. Let U and V be such that U ≤ V and let π be such that
ϕ(U) = R(s, a) + γPU , then

|Φ(U) ≤ Rπ + γPV ≤ max
π′

(R(s, a) + γPV ) = Φ(V )

Since Φ is monotonic, assuming Uk ≤ Vk, gives us

Un+1 = Φ(Uk) ≤ Φ(Vk) = max
π

(R(s, a) + γPV )

If πk+1 is the maximising policy, then

Φ(Vk) = R(sk+1, ak+1) + γPVk ≤ R(sk+1, ak+1) + γPV = Vk+1

Therefore, Uk+1 ≤ Vk+1 which by induction holds for k ∈ 0, 1, ..,K.
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