
CSE6243: Advanced Machine Learning Fall 2023

Lecture 23: Policy Gradient and Actor-Critic
Lecturer: Bo Dai Scribes: Hiren Kumawat, Rishabh Goswami

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

23.1 Recap

In prior lectures, we covered Markov Decision Processes and the Bellman equation. We encountered two
types of problems:

• Policy Evaluation: attempt to find value of V (π) or Q(π) for a given policy π.

• Policy Optimization: estimate an optimal policy π.

Additionally, we discussed the differences in planning and learning. When planning, we have access to a
model of the given environment. When learning, we do not have this model, so we are reliant on experience.

We also discussed categorization of these algorithms on various factors, like on-policy vs off-policy and
model-based vs model-free. Of the model-free categorization, common methods include temporal-difference
and policy gradient methods.

Today’s lecture will focus primarily on policy gradient reinforcement learning.

23.2 New Content

23.2.1 Policy Gradient

We can express the policy gradient algorithm as follows:

π∗ = argmax
π

J(π) = Eπ

[∞∑
t=0

γtR(st, at)

]

On a high level, this represents the expected value of the accumulation of rewards under a given policy. We
can parameterize this policy gradient calculation with θ, allowing us to express the problem as: maxπθ

J(πθ).

With this parameterization, we can describe the gradient ascent as follows:

1. Initialize θ0.

2. For i = 1, . . . :
θt+1 = θt + η∇θJ(πθ)

23-1

23-2 Lecture 23: Policy Gradient and Actor-Critic

= argmin
θ

⟨θ,∇θtJ(πθt)⟩ −
1

2η
||θ − θt||2

We can change this metric (||θ − θt||2) in the last equation to generate the whole policy gradient family.

Going back to the generalized update, we can break up these terms using the chain rule as:

∇θJ(πθ) = ∇πJ(πθ)∇θπθ(a, s)

In this new equation, we can compute ∇πJ(π) to be:

= ∇π Eπ

[∞∑
t=0

γtR(st, at)

]

For convenience, we will refer to the expectation term as h(τ) (i.e., h(τ) =
∑∞

t=0 γ
tR(st, at)), where τ =

s0, a0, r0, . . . sn, an, rn representing the state, action, reward triples over all timesteps t.

∇π Eπ[h(τ)] =

∫ ∞∏
t=0

p(st+1|st, at)∇π(at|st)µ(s0)h(τ)dτ

However, this computation is susceptible to the curse of dimensionality – it is quite difficult to compute this
integral. Instead, we can apply the following trick to ease the computation.

∇p Ep(x)[f(x)] =

∫
∇p(x)f(x)dx

=

∫
p(x)

∇p(x)

p(x)
f(x)dx

= Ep(x) [∇ log p(x)− f(x)]

Going back to our previous equation, we can apply the above substitution:

∇π Eπ[h(τ)] =

∫ ∞∏
t=0

p(st+1|st, at)
∇π(at|st)
∇π(at|st)

π(at|st)h(τ)dτ

=

∫ ∞∏
t=0

p(st+1|st, at)∇ log

(∞∏
t=0

π(at|st)

)
π(at|st)h(τ)dτ

= Eπ

[
h(τ) ·

∞∑
t=0

∇ log π(at|st)

]

This equation can also be adapted to incorporate policy ratios, i.e.

Eπb

[∞∏
t=0

π

πb
. . .

]

Note that this computation involves the policy ratios being multiplied for each step, which will go to 0 and
result in updates that are not meaningful. This update approach is still good for one step.

Lecture 23: Policy Gradient and Actor-Critic 23-3

23.2.2 Gradient Estimator

Unfortunately, when taking multiple steps, the computation of the gradient ∇πJ(π) in every step becomes
computationally intensive. We address this by devising the gradient estimator below.

∇πJ(π) = ∇πEµ0
[V π(s)] = Eµ0

[∇πV
π(s)] = ∇πV

π(s) =

∇π

∫
π(a|s)Qπ(s, a)da =

∫
[∇ππ(a|s)Qπ(s, a) + π(a|s)∇Qπ(s, a)]da =

We can now apply the Bellman equation on Qπ(s, a):

∫
π(a|s)[∇log(π(a|s)Qπ(s, a) +∇(R+ γEπ[V

π(s1)])] =

∫
π(a|s)[∇log(π(a|s)Qπ(s, a) + γEπ[V

π(s1)]]

∇πV
π(s) = Eπ[∇log(π(a, s)QT (s, a)] + γEπ(s1|s)[V

π(s1)] =

Eπ [∇ log π(a|s)Qπ(s, a)] + γ Epπ(s′ |s) [∇ log π(a′ |s′)Qπ(s′ , a′)] + γk Epπ(sk|s) [V
π(sk)]

Eµ0
[∇πV

π(s)] =

∞∑
t=0

γt Eµ Epπ(st|s) [∇ log π(at|st)Qπ(st, at)]

We can introduce a notation change for the cumulative distribution, writing this expectation term as dπt (st).
Thus,

∞∑
t=0

γtdπt (st) = (1− γ)dπ(s)

We then have our gradient estimator expressed as

∇πJ(π) = Edπ(s)π(a|s) [∇ log π(a|s)Qπ(s, a)]

This new approach reduces variance and computational cost, and we can also use off-policy which makes it
more data-efficient.

23-4 Lecture 23: Policy Gradient and Actor-Critic

23.2.3 Qπ Estimator

With the gradient estimator equation, we have addressed concerns regarding variance domination and the
computational cost of gradient calculation. The main difficulty now is calculating Qπ, which we can address
by devising a Qπ estimator.

1. Initialize θ0 . . .Q0
φ

2. for i = 1 . . . n, evaluate Q̂πi :

plug Q̂πi for ∇̂πi
J(πi)

update θt+1 = θt + η∇̂πJ(π)

In this algorithm, θt+1 is the actor that attempts to implement a policy, and Q̂πi is the critic that evaluates
the current policy to provide feedback.

Now, we will use the policy gradient.

∇πJ(π) = Ed,π [∇ log(π(a|s))(Q(s, a)− f(s))]

where f(s) represents the baseline.
Ed [∇ log(π(a|s))(f(s)] = 0

=

∫
d

∇π(a|s)f(s)da

Eπ [∇ log(π(a|s))(f(s)] = 0

=

∫
d

π(a|s)∇π(a|s)
π(a|s)

f(s)da = f(s) ·
(
∇
∫

π(a|s)da
)

= f(s)

Thus, we have devised a valid Qπ estimator for any f(s).

f∗ = argmin
f

(Var[∇ log(π(a|s))(Q(s, a)− f(s))]

In practice, we don’t use f∗. Instead, we use the control variate below to estimate it because it is easier to
compute:

V π(s) = E[Qπ(s, a)], where πt(a
∗|s) > 0 ∀t

