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24.1 Recap

The last four lectures concerned the fundamentals of reinforcement learning (RL). In particular, they covered
the following topics.

• Markov Decision Processes (MDPs) are a formalism used to reason about agents in decision making
settings. A simple deterministic MDP can be specified using a tuple (S,A, f, r), where S is the state
space, A is the action space, f : S × A → S is the environment dynamics and r : S × A → R is a
reward function. A key property of MDPs is the Markov property, which states that p and r are only
dependent on the current state and action.

• Policy evaluation refers to a class of methods whose purpose is to compute expected return under
a policy, such as by learning a value function. Policy optimization involves using an evaluation in
order to improve the policy.

• There are a variety of distinctions to be made between RL algorithms. For example there are model-
free and model-based algorithms, and model-free algorithms can be either value-based or policy-
based. Algorithms can be on-policy or off-policy and can be tabular or use function approximation.
Note that these distinctions need not be mutually exclusive. For example actor-critic methods such as
DDPG are both policy-based and value based, and methods like DREAMER have model-based and
model-free components.

24.2 New Content

24.2.1 Behavioral Cloning

In reinforcement learning, the goal is for the agent to learn based on interacting with the environment
and collecting rewards. In contrast, behavioral cloning addresses a problem setting where we do not have
access to a reward function, but do have an offline dataset of states si and samples from the optimal policy
ai ∼ π∗(ai|si). This problem is actually much easier, as we can simply use supervised learning to directly
learn actions, avoiding many of the pitfalls associated with RL.

To be more specific, we are given a dataset

D =

{
(si, a

∗
i ) ∼

N∏
i=1

dπ
∗
(si)π(a

∗
i |si)

}
(24.1)
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where dπ
∗
(si) is the probability density of visiting state si when rolling out the optimal policy π∗. With this

dataset, we learn an estimator π̂ according to the the following objective:

π̂ = argmax
π

N∑
i=1

log π(a∗i |si). (24.2)

While this may work well in simple settings, policies learned in this manner tend to suffer from distribution
shift. This is a phenomenon where the policy makes a small error, leading it to a state slightly out of its
training distribution. In this state, it makes a further error, and this process continues until the policy has
completely left its training distribution and acts completely unpredictably. This phenomenon is formalized
by Theorem 24.1, which shows that the policy’s error grows quadratically in the horizon of a test trajectory.

Theorem 24.1 Assume that the total variance distance TV between the learned estimator π̂ and the optimal
policy π∗ satisfies TV(π̂, π∗) ≤ ϵ. Then after H steps, we have

J(π∗)− J(π̂) ≤ H2ϵ. (24.3)

Proof: Let π[t] be a sequence of policies or length H, where the first t are optimal and the remainder are
from the estimator, so

π[t] = (π∗
1 , . . . , π

∗
t , π̂t+1, . . . , π̂H). (24.4)

We note that with this setup we can recover the learned policy with π̂ = π[0] and the optimal with π∗ = π[H].
Using this, we see that

J(π∗)− J(π̂) =

H∑
t=1

(J(π[t]− J(π[t− 1]) (24.5)

=

H∑
t=1

Es∼dπ∗
t

[
Eπ∗

t
[Qπ̂

t+1]− Eπ̂t [Q
π̂
t+1]

]
(24.6)

=

H∑
t=1

Es∼dπ∗
t

[
⟨Qπ̂

t+1, π
∗
t − π̂t⟩

]
(24.7)

≤
H∑
t=1

Es∼dπ∗
t

[
(H − t) max

f∈[0,1]
⟨f, π∗

t − π̂t⟩
]

(24.8)

=

H∑
t=1

tϵ (24.9)

∼ O(H2ϵ) (24.10)

24.2.2 DAgger

DAgger is an imitation learning algorithm which addresses issues with distribution shift that arise when
rolling out behavioral cloned policies. At a high level, it works by rolling out the learned policy and querying
the expert policy at each state it encounters. Then, it periodically retrains on the new, expanded dataset.
Over time, this expands the distribution of states where the policy is in-distribution and can act predictably.
A detailed algorithm is presented in Algorithm 1.
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Algorithm 1 DAgger

Require: Expert policy π∗, hyperparameters βi.
Initialize an empty dataset, D ← ∅
Initialize π̂1 to any policy.
for i ∈ {1, . . . , N} do
Let πi ← βiπ

∗ + (1− βi)π̂i

Roll out πi for m steps and record visited states. Let Di = {(sj , π∗(sj))}mj=1.
Aggregate datasets: D ← D ∪Di.
Train π̂i+1 on D.

end for

Note that the βis are hyperparameters weighting the demonstrator and learned policies at each iteration,
and they should decay from β1 = 1 to βN = 0.

DAgger has numerous advantages and disadvantages. It does a good job addressing distribution shift, and
can lead to some very high-performing trajectories. However, it adds substantial supervisor burden and
may in practice lead to lower-quality supervisor actions. For example, it would be very difficult to provide
accurate controls in real time to a car which is ignoring the demonstrator’s controls and acting according to
its own policy since we are used to acting based on how our controls affect the system we are controlling.

24.2.3 Learning from Preferences

In the learning from preferences setting, the learner has access only to a set of expert preferences D =
{(s, a+, a−)i}mi=1. There are various ways to address this setting. For example, we can directly optimize a Q
function by optimizing Equation 24.11 using a cross entropy loss

p(a+ > a−|s) = σ(Q(s, a+)−Q(s, a−)). (24.11)

With the Q function learned, we can use it to create a maximum-entropy policy π(a|s) ∝ exp (Q(s, a)).

24.2.4 Reinforcement Learning from Human Feedback

Reinforcement learning form human feedback (RLHF) refers to a class of methods which use human feedback
to learn a reward function for reinforcement learning. They have been applied with great results to large
language models, which we’ll focus on here. A high-level overview is shown in Figure 24.1.

First, the authors use supervised training to finetune their model on human-written responses and outputs.
This is a first step in aligning the model to better handle generative tasks, which humans are more likely
to require of it. We note that this is a different process than instruction finetuning Wei et al. (2022), which
finetunes the language model by turning problems from publicly available NLP datasets into instruction-
following tasks.

Using their supervised fine-tuned model, the authors created a web interface for people on the internet to
chat with the chatbot, and the authors recorded the prompts these users gave it. They filtered this down
into their prompt dataset. From there they alternated between updating their reward model and using it to
fine-tune with RL as discussed below.

In order to learn a reward model, they query the language model using the prompt dataset and record K
samples from the model. They then had human experts rank these preferences, leading to

(
K
2

)
comparisons.
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Figure 24.1: The three steps used in Ouyang et al. (2022) for fine-tuning an LLM using human feedback.
First, the authors used supervised fine-tuning on prompts and responses writted by humans. Next, they
query human comparisons between model outputs that they use to learn a reward function. Finally, they
use this reward function to finetune the model using PPO. Note: this figure is taken from Ouyang et al.
(2022).

Finally, they use this to optimize a cross entropy loss

L(θ) = − 1(
K
2

)E(x,y+,y−)∼D

[
log(σ(rθ(x, y

+)− rθ(x, y
−)))

]
. (24.12)

After learning a reward function, authors use it to optimize the policy. While a näıve solution would be
to simply run PPO out of the box, this leads to regressions because it ends up over-optimizing the learned
reward function, which is not perfect. To that end, authors propose the following objective:

objective(ϕ) =E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

(
πRL
ϕ (y|x)/πSFT

ϕ (y|x)
)]

(24.13)

+ γEx∼Dpretrain
[log(πRL

ϕ (x))] (24.14)

Note that in line 24.13 the authors add a KL divergence term between the RL-trained model and the
supervised fine-tuned model, which helps to prevent the learner from overfitting the reward model. They
also mix in gradients from pretraining in line 24.14 in order to prevent regressions on the NLP tasks it was
trained on.
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