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4.1 Recap

• How to judge whether an optimization is convex or not?

min
x∈Ω

f(x) is convex if (4.1)

Ω is a convex set and f(x) is a convex function. (4.2)

4.2 New Content

4.2.1 Zeroth Order Condition for Convex Functions

A function f(·) ∈ Ω → R is a convex function iff


Ω is a convex set

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀x, y ∈ Ω, t ∈ [0, 1]
(4.3)

4.2.2 First Order Condition for Convex Functions

A differentiable function f(·) ∈ Ω → R is a convex function iff


Ω is a convex set

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ Ω
(4.4)

Proof: Bidirectionality of First-Order Condition

(if part: ”⇐” )

Given x0 = tx+ (1− t)y, t ∈ [0, 1], we have


f(x) ≥ f(x0) +∇f(x0)

T (x− x0)

f(y) ≥ f(x0) +∇f(x0)
T (y − x0)

(4.5)
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We multiply top row by t and bottom row by (1− t). Thus,

tf(x) + (1− t)f(y) ≥ f(x0) +∇f(x0)
T (t(x− x0) + (1− t)(y − x0)) (4.6)

Note: t(x− x0) + (1− t)(y − x0) = 0 when substituting x0 = tx+ (1− t)y, thus

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y) (4.7)

(only-if part: ”⇒” )

When t = 0, the inequality f((1− t)y+ tx) ≤ tf(x)+(1− t)f(y) is trivially satisfied. Thus, we only consider
below the case where t ∈ (0, 1]:

Given f((1− t)y + tx) ≤ tf(x) + (1− t)f(y), we have

f((1− t)y + tx)

t
≤ tf(x) + (1− t)f(y)

t
(4.8)

f((1− t)y + tx)

t
≤ f(x)− f(y) +

f(y)

t
(4.9)

f(x) ≥ f(y) +
f((1− t)y + tx)− f(y)

t
(4.10)

As t → 0, we have f(x) ≥ f(y) +∇f(y)T (x− y) by applying Taylor Expansion

4.2.3 Second Order Condition for Convex Functions

A twice-differentiable f(·) ∈ Ω → R is a convex function iff


Ω is a convex set

∇2f(x) ≥ 0, ∀x ∈ Ω
(4.11)

Note: ∇2f(x) is a positive semi-definite Hessian matrix.

Proof: Bidirectionality of Second Order Condition

(if part: ”⇐” )

Given f(x+ h) = f(x) + hT∇f(x+ h) + 1
2h

T∇2f(x+ h)h+O(||h||3), we observe

1

2
hT∇2f(x+ h)h+O(||h||3) ≥ 0 (4.12)

Thus, f(x+ h) ≥ f(x) + hT∇f(x+ h), ∀h.

Note: O(||h||3) is a residual term and dominated by the second-order term 1
2h

T∇2f(x+ h)h.

(only-if part: ”⇒” )

Given f(x+ h) = f(x) + hT∇f(x+ h) + 1
2h

T∇2f(x+ h)h+O(||h||3), we have

0 ≤ f(x+ h)− f(x)− hT∇f(x+ h) =
1

2
hT∇2f(x+ h)h+O(||h||3) ∀h, x (4.13)

Thus, ∇2f(x) ≥ 0.



Lecture 4: Optimization: Conjugate and Gradient Descent 4-3

4.2.4 Convexity of Composition of Functions

The function g(x) = f(h(x)) is convex when:

f is convex and increasing AND h is convex

f is convex and decreasing AND h is concave
(4.14)

Proof: This can be obtained via taking the derivative

g′(x) = f ′(h(x))h′(x) (4.15)

⇒ g′′(x) = f ′′(h(x))(h′(x))2 + f ′(h(x))h′′(x) (4.16)

The terms in the second derivative are positive, thus the g is convex.

Note: The above conditions are sufficient but not necessary for a function to be convex. Even if these
conditions are not satisfied, it is possible for the function to be convex.

Example: Is the function g(x) = log
d

i=1 exp(a
T
i x+ bi) convex? Yes.

Proof: This can be proved by taking the derivative twice and using the second-order condition.

4.2.5 Gradient Descent

The objective is to solve the optimization minx f(x) where f(x) is a loss function. The algorithm is as
follows:

1. initialize x0

2. for t = 1, ..., T do xt+1 = xt − η∇f(xt)

where η is step-size.

Observation 4.1 xt+1 is the solution to surrogate loss function

xt+1 = argmin
x

f(xt) +∇f(xt)
T (x− xt) +

1

2η
||x− xt||2

Proof: We take the derivative and set it equal to zero:

∇f(xt) +
1

η
(x− xt) = 0 (4.17)

⇒xt+1 = xt − η∇f(xt) (4.18)

Observation 4.2 f(xt+1)− f(x) ≤ 0 holds for L-smooth function.

Proof:

∀x, y, f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
||y − x||2 (4.19)

⇒f(xt+1)− f(xt) ≤ ∇f(xt)
T (xt+1 − xt) +

L

2
||xt+1 − x||2 (4.20)
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We want to prove the right-hand-side is ≤ 0.

Substituting for xt+1 = xt − η∇f(xt), we get:

−η∇f(xt)
T∇f(xt) +

L

2
||η∇f(xt)||2

note that L
2 ||η∇f(xt)||2= Lη2

2 ∇f(xt)
T∇f(xt), hence

−η∇f(xt)
T∇f(xt) +

L

2
||η∇f(xt)||2= (

Lη2

2
− η)∇f(xt)

T∇f(xt)

For optimal η∗ we have Lη∗ − 1 = 0 → η∗ = 1
L Thus,

−η∗∇f(xt)||2=
−1

2L
∇f(xt)

T∇f(xt) ; η
∗ =

1

L

From the above, we can get a bound on the improvement:

f(xt+1)− f(xt) ≤
−1

2L
||∇f(xt)||2 ; η∗ =

1

L

Theorem 4.3 Finding optimal x with Gradient Descent

f(xt)−minf(x) ≤ 2L||x0 − x∗||2
t

(4.21)

When gradient descent is applied for convex and L-smooth, this condition holds.

Note: x∗ = argminf(x), and the optimal x could be a set, not necessarily a single value.

4.2.6 Stochastic Gradient Descent

Stochastic Gradient Descent is one type of Gradient Descent, which is often used in practice.

minx f(x) =
n

i=1 fi(x)

∇f(x) = ∇
n

i=1 fi(x) =
n

i=1 ∇fi(x)

∇̃f(x) =
k

i=1 ∇fi(x) ∀k << n

Also,

E[∇̃f(x)] = ∇f(x)

E[||∇̃f(x)||2] ≤ C

which means that it is that ∇̃f(x) is an unbiased estimator of f(x).

xt+1 = xt − y∇̃f(xt) gives stochastic gradient descent.
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4.2.7 Convex Conjugate & Gradient Descent (Supplementary)

Definition 4.4 (Convex Conjugate)

f : Rn → Ris a conjugate function if (4.22)

f∗(y) = sup
x∈Rn

{yTx− f(x)} (Legendre-Fenchel Transformation) (4.23)

which possesses the following properties:

Property 1 (Fenchel’s Inequality)

f(x) + f∗(y) ≥ xT y, ∀x, y (4.24)

Property 2 f∗(·) is convex.

Hint to proof: consider pointwise max rule.

Definition 4.5 (BiConjugate Function) We call f∗∗(x) the biconjugate function if it is the conjugate of
a conjugate function, i.e.,

Given f(x) and its conjugate f∗(y) = supy y
Tx− f(x),

f∗∗(x) = sup
x

yTx− f∗(y) (4.25)

Theorem 4.6

f(x) ≥ f∗∗(x) (4.26)

Proof: By definition,

f∗(y) ≥ yTx− f(y), ∀y (4.27)

⇒ f(x) ≥ yTx− f∗(y) i.e., (4.28)

f(x) ≥ sup
y
(yTx− f∗(y)) = f∗∗(x) (4.29)

Therefore, fˆ** is lower bound convex of f(x).

Theorem 4.7 if f is convex and closed,

f∗∗(x) = f(x) (4.30)


