CSE6243: Advanced Machine Learning Fall 2023

Lecture 7: Sampling: Markov Chain Monte Carlo (MCMC)

Lecturer: Bo Dai Scribes: Wenbo Chen, Hangtian Zhu

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Recap

Given function f(x) and the target distribution p(z), we want to inference the empirical mean by sampling:

N
Ep(a) | Z x;), where z; ~ p(z)

The previous lectures covered acceptance-rejection sampling and importance sampling. They sample from a
proposal distribution ¢(z) which is easier to sample. Acceptance-rejection sampling accepts the sample with

probability (?) Importance sampling reweights the sample with 2 (zg

However, both sampling methods have limitations. Acceptance-rejection sampling requires finding a M such
that Mq(z) > p(x) Yx. M could be very large for high-dimension distribution and thus waste a large number
of samples.

Importance sampling could have very high variance:

Var[p—

) -EES plz) / £ 4r — B2(f()] (7.1)

Specifically, g(z) — 0,p(x) # 0, Var[%f(m)] — 0.

7.2 New Content

In this lecture, we introduce Markov Chain Monte Carlo (MCMC).

7.2.1 Intuition

Define the conditional probability or transition kernel T'(-), we want to construct a sequence of sampling:
zo ~ po(x), 21 = T(20), 20 = T(21)," -+, 21 ~ p(2),

such that along the steps, the sampling converges to the target distribution.

7-1

7-2 Lecture 7: Sampling: Markov Chain Monte Carlo (MCMC)

Algorithm 1 MCMC
o ~ po(x)
fort=1---T do

Tg1 ~ T(|we)
end for

7.2.2 MCMC
As mentioned, we want the samples converge to the target distribution:
p(z) = tlgTolo T* (2|z0)p(wo)do,

where

t
Tt(x|3;0> :/Tt_l(m|x1)T(m1|x0)dac1 :/HT($i+1|l‘i)d{l‘i 2;%
=0

Theorem 7.1 The procedure converges to the target distribution if and only if the following conditions hold:

1) p(x) is a stationary distribution of the Markov chain T (z|z'),i.e., (7.2)
pa) = [TGl pla)d. (7.3
2) There is only one stationary distribution p(z). (7.4)

Theorem 7.1 is typically hard to check and people typically look into the sufficient condition:

Theorem 7.2 The procedure converges to the target distribution if the following conditions hold:

1) Detailed balance: p(x)T(ylz) = p(y)T(x|y), (7.5)
2) Ergodicity: Nz, T(-|r) >0 and T"(-|z) > 0.

The intuition of 2) in Theorem 7.2 is the sample can go everywhere at every step.

Proof:
/p(y)T(a:|y)dy = /p(:c)T(y|x)dy (detailed balance in 7.5) (7.7)
—p(a) [Tlole)dy (1.9
=p(z)*1 (7.9)
— pla) (7.10)
|

7.2.3 Metropolis-Hastings (MH) algorithm

Theorem 7.3 Metropolis-Hastings in Algorithm 2 satisfies the detailed balance.

Lecture 7: Sampling: Markov Chain Monte Carlo (MCMC) 7-3

Algorithm 2 Metropolis-Hasting (MH)
zo ~ po()
fort=1---T do

Xr = Ty
y~q(|r)
A(z,y) = min(
u~U[0,1]

if u < A(z,y) then

Ti41 =Y
else

r(y)a(z|y)
Pl)

Tit41 = T
end if
end for
*The blue part is the transition kernel T'(+|x)

Proof:

Based on Theorem 7.2, we know MH converges to the target distribution. MH is a template algorithm, based
on different designs of the distribution ¢(:|z), we get different instantiation of algorithms such as random
walk, Gibbs sampling, and Metropolis Adjust Langevin Algorithm (MALA).

7.2.4 Random Walk

Random walk chooses

2
atle) o< exp(~12 0 o 1y —)<)

The acceptance rate is

. D
A(z,y) = min
(z,9) (p

since q(y|r) = q(z|y). Random walk could be written as y = z + ¢, where € ~ N(0,02). The choice of
o controls the tradeoff between the computational cost of getting a new sample and dependency i.e., how
different the new sample is from the previous points.

7-4 Lecture 7: Sampling: Markov Chain Monte Carlo (MCMC)

7.2.5 Gibbs Sampling

Gibbs sampling only changes one entry in z at a time. Recall p(z) = p(xg,---,xq),r € R We define
a(wle) = plale_o),

where z_; = {0, Ti—1,Tit1," T}

The acceptance rate is:

p(zi)p(r—i|z;)

b =i o)’

1)=1

7.2.6 Metropolis Adjusted Langevin Algorithm (MALA)

MALA could be viewed as injecting target probability into random walk:

y=x+nVlogp(z) + /ne

