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7.1 Recap

Given function f(x) and the target distribution p(z), we want to inference the empirical mean by sampling:

N
Ep(a) | Z x;), where z; ~ p(z)

The previous lectures covered acceptance-rejection sampling and importance sampling. They sample from a
proposal distribution ¢(z) which is easier to sample. Acceptance-rejection sampling accepts the sample with

probability (?) Importance sampling reweights the sample with 2 (zg

However, both sampling methods have limitations. Acceptance-rejection sampling requires finding a M such
that Mq(z) > p(x) Yx. M could be very large for high-dimension distribution and thus waste a large number
of samples.

Importance sampling could have very high variance:

Var[p—

) -EES plz) / £ 4r — B2(f()] (7.1)

Specifically, g(z) — 0,p(x) # 0, Var[%f(m)] — 0.

7.2 New Content

In this lecture, we introduce Markov Chain Monte Carlo (MCMC).

7.2.1 Intuition

Define the conditional probability or transition kernel T'(-), we want to construct a sequence of sampling:
zo ~ po(x), 21 = T(20), 20 = T(21)," -+, 21 ~ p(2),

such that along the steps, the sampling converges to the target distribution.
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Algorithm 1 MCMC
o ~ po(x)
fort=1---T do

Tg1 ~ T(|we)
end for

7.2.2 MCMC
As mentioned, we want the samples converge to the target distribution:
p(z) = tlgTolo T* (2|z0)p(wo)do,

where

t
Tt(x|3;0> :/Tt_l(m|x1)T(m1|x0)dac1 :/HT($i+1|l‘i)d{l‘i 2;%
=0

Theorem 7.1 The procedure converges to the target distribution if and only if the following conditions hold:

1) p(x) is a stationary distribution of the Markov chain T (z|z'),i.e., (7.2)
pa) = [ TGl pla)d. (7.3
2) There is only one stationary distribution p(z). (7.4)

Theorem 7.1 is typically hard to check and people typically look into the sufficient condition:

Theorem 7.2 The procedure converges to the target distribution if the following conditions hold:

1) Detailed balance: p(x)T(ylz) = p(y)T(x|y), (7.5)
2)  Ergodicity: Nz, T(-|r) >0 and T"(-|z) > 0.

The intuition of 2) in Theorem 7.2 is the sample can go everywhere at every step.

Proof:
/p(y)T(a:|y)dy = /p(:c)T(y|x)dy (detailed balance in 7.5) (7.7)
—p(a) [ Tlole)dy (1.9
=p(z)*1 (7.9)
— pla) (7.10)
|

7.2.3 Metropolis-Hastings (MH) algorithm

Theorem 7.3 Metropolis-Hastings in Algorithm 2 satisfies the detailed balance.
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Algorithm 2 Metropolis-Hasting (MH)
zo ~ po()
fort=1---T do

Xr = Ty
y~q(|r)
A(z,y) = min(
u~U[0,1]

if u < A(z,y) then

Ti41 =Y
else

r(y)a(z|y)
Pl )

Tit41 = T
end if
end for
*The blue part is the transition kernel T'(+|x)

Proof:

Based on Theorem 7.2, we know MH converges to the target distribution. MH is a template algorithm, based
on different designs of the distribution ¢(:|z), we get different instantiation of algorithms such as random
walk, Gibbs sampling, and Metropolis Adjust Langevin Algorithm (MALA).

7.2.4 Random Walk

Random walk chooses

2
atle) o< exp(~12 0 o 1y — )< )

The acceptance rate is

. D
A(z,y) = min
(z,9) (p

since q(y|r) = q(z|y). Random walk could be written as y = z + ¢, where € ~ N(0,02). The choice of
o controls the tradeoff between the computational cost of getting a new sample and dependency i.e., how
different the new sample is from the previous points.
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7.2.5 Gibbs Sampling

Gibbs sampling only changes one entry in z at a time. Recall p(z) = p(xg,---,xq),r € R We define
a(wle) = plale_o),

where z_; = {0, Ti—1,Tit1," T}

The acceptance rate is:

p(zi)p(r—i|z;)

b =i o)’

1)=1

7.2.6 Metropolis Adjusted Langevin Algorithm (MALA)

MALA could be viewed as injecting target probability into random walk:

y=x+nVlogp(z) + /ne



