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7.1 Recap

Given function f(x) and the target distribution p(x), we want to inference the empirical mean by sampling:

Ep(x)[f(x)] ≈
1

N

N

i=1

f(xi), where xi ∼ p(x)

The previous lectures covered acceptance-rejection sampling and importance sampling. They sample from a
proposal distribution q(x) which is easier to sample. Acceptance-rejection sampling accepts the sample with

probability p(x)
Mq(x) . Importance sampling reweights the sample with p(x)

q(x) .

However, both sampling methods have limitations. Acceptance-rejection sampling requires finding a M such
that Mq(x) ≥ p(x) ∀x. M could be very large for high-dimension distribution and thus waste a large number
of samples.

Importance sampling could have very high variance:

V ar[
p(x)

q(x)
f(x)] = Eq[

p2(x)

q2(x)
f2(x)]− E2

q[
p(x)

q(x)
f(x)] =


f2(x)

p2(x)

q(x)
dx− E2

p[f(x)] (7.1)

Specifically, q(x) → 0, p(x) ∕= 0, V ar[p(x)q(x)f(x)] → ∞.

7.2 New Content

In this lecture, we introduce Markov Chain Monte Carlo (MCMC).

7.2.1 Intuition

Define the conditional probability or transition kernel T (·), we want to construct a sequence of sampling:

x0 ∼ p0(x), x1 = T (x0), x0 = T (x1), · · · , xT ∼ p(x),

such that along the steps, the sampling converges to the target distribution.
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Algorithm 1 MCMC

x0 ∼ p0(x)
for t = 1 · · ·T do

xt+1 ∼ T (·|xt)
end for

7.2.2 MCMC

As mentioned, we want the samples converge to the target distribution:

p(x) = lim
t→∞


T t(x|x0)p(x0)dx0,

where

T t(x|x0) =


T t−1(x|x1)T (x1|x0)dx1 =

 t

i=0

T (xi+1|xi)d{xi}t−1
i=1.

Theorem 7.1 The procedure converges to the target distribution if and only if the following conditions hold:

1) p(x) is a stationary distribution of the Markov chain T (x|x′), i.e., (7.2)

p(x′) =


T (x|x′)p(x)dx, (7.3)

2) There is only one stationary distribution p(x). (7.4)

Theorem 7.1 is typically hard to check and people typically look into the sufficient condition:

Theorem 7.2 The procedure converges to the target distribution if the following conditions hold:

1) Detailed balance: p(x)T (y|x) = p(y)T (x|y), (7.5)

2) Ergodicity: ∀x, T (·|x) > 0 and T t(·|x) > 0. (7.6)

The intuition of 2) in Theorem 7.2 is the sample can go everywhere at every step.

Proof:


p(y)T (x|y)dy =


p(x)T (y|x)dy (detailed balance in 7.5) (7.7)

= p(x)


T (y|x)dy (7.8)

= p(x) ∗ 1 (7.9)

= p(x) (7.10)

7.2.3 Metropolis-Hastings (MH) algorithm

Theorem 7.3 Metropolis-Hastings in Algorithm 2 satisfies the detailed balance.
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Algorithm 2 Metropolis-Hasting (MH)

x0 ∼ p0(x)
for t = 1 · · ·T do

x = xt

y ∼ q(·|x)
A(x, y) = min( p(y)q(x|y)p(x)q(y|x) , 1)

u ∼ U [0, 1]
if u ≤ A(x, y) then

xt+1 = y
else

xt+1 = x
end if

end for
*The blue part is the transition kernel T (·|x)

Proof:

p(x)T (y|x) = p(x)A(x, y)q(y|x)

= p(x)q(y|x)[min(
p(y)q(x|y)
p(x)q(y|x) , 1)]

= min(
p(x)q(y|x)
p(y)q(x|y) · p(y)q(x|y)

p(x)q(y|x) ,
p(x)q(y|x)
p(y)q(x|y) )p(y)q(x|y)

= min(1,
p(x)q(y|x)
p(y)q(x|y) )p(y)q(x|y)

= A(y, x)p(y)q(x|y)
= p(y)T (x|y)

Based on Theorem 7.2, we know MH converges to the target distribution. MH is a template algorithm, based
on different designs of the distribution q(·|x), we get different instantiation of algorithms such as random
walk, Gibbs sampling, and Metropolis Adjust Langevin Algorithm (MALA).

7.2.4 Random Walk

Random walk chooses

q(y|x) ∝ exp(−y − x2
2σ2

) ∝ U(y − x≤ δ).

The acceptance rate is

A(x, y) = min(
p(y)q(x|y)
p(x)q(y|x) , 1) =

p(y)

p(x)
,

since q(y|x) = q(x|y). Random walk could be written as y = x + , where  ∼ N(0,σ2). The choice of
σ controls the tradeoff between the computational cost of getting a new sample and dependency i.e., how
different the new sample is from the previous points.
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7.2.5 Gibbs Sampling

Gibbs sampling only changes one entry in x at a time. Recall p(x) = p(x0, · · · , xd), x ∈ Rd. We define

q(y|x) = p(xi|x−i),

where x−i = {x0, · · · , xi−1, xi+1, · · · , xd}.

The acceptance rate is:

A(x, y) = min(
p(y)q(x|y)
p(x)q(y|x) , 1) = min(

p(xi)p(x−i|xi)

p(x−i)p(xi|x−i)
, 1) = 1

7.2.6 Metropolis Adjusted Langevin Algorithm (MALA)

MALA could be viewed as injecting target probability into random walk:

y = x+ η∇ log p(x) +
√
η


