CSE6243: Advanced Machine Learning	Fall 2023
Lecture 8: Density Parametrization	
Lecturer: Bo Dai Scribes: Bharat	Goyal, Chetan Reddy

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Recap

During previous lectures we discussed *convex optimization* and *sampling*, which are techniques used in supervised, unsupervised, and reinforcement learning. Those techniques tell us **how to learn**, but we now want to formulate **what we want to learn**. We want to parameterize the distributions or densities by determining p(x). We will also look at figuring out $p(\theta)$, $p(x|\theta)$, and $p(\theta|x)$.

8.2 New Content: Distributions (Density) Parametrization

8.2.1 Exponential Family of Distributions

The probability distribution is in the *canonical parameterization*:

$$p(x) = h(x)\exp(\eta^T T(x) - A(\eta))$$
(8.1)

 $A(\eta)$ is the partition function which satisfies the following condition to ensure that p(x) is a valid distribution:

$$A(\eta) = \log\left(\int h(x) \exp(\eta^T T(x)) dx\right)$$
(8.2)

Typically, it's easier to determine these terms by converting p(x) to the format above and then comparing terms.

Properties of Exponential Distributions

Property 1 (Convexity). $A(\eta)$ is convex with respect to η . **Proof:** For convexity we need to show that $A(\lambda\eta_1 + (1 - \lambda)\eta_2) \le \lambda A(\eta_1) + (1 - \lambda)A(\eta_2)$, i.e.,

$$\exp(A(\lambda\eta_1 + (1-\lambda)\eta_2)) = \int h(x) \exp\left((\lambda\eta_1 + (1-\lambda)\eta_2)^T T(x)\right) dx$$

$$= \int \left(h(x)^{\lambda} \exp\left(\lambda\eta_1^T T(x)\right)\right) \left(h(x)^{1-\lambda} \exp\left((1-\lambda)\eta_2^T T(x)\right)\right) dx$$

$$= \int \left(h(x) \exp\left(\eta_1^T T(x)\right)\right)^{\lambda} \left(h(x) \exp\left(\eta_2^T T(x)\right)\right)^{1-\lambda} dx$$

$$\leq \left(\int \left(h(x) \exp\left(\eta_1^T T(x)\right)\right) dx\right)^{\lambda} \left(\int h(x) \exp\left(\eta_2^T T(x)\right) dx\right)^{1-\lambda}$$

The last step of the simplification relies on Holder's identity with $p = \frac{1}{\lambda}$ and $q = \frac{1}{1-\lambda}$:

$$\int f(x)g(x)dx \le \left(\int f(x)^p dx\right)^{\frac{1}{p}} \left(\int g(x)^q dx\right)^{\frac{1}{q}}$$

Upon taking the log of the LHS and RHS above and applying the definition of $A(\eta)$, we get:

$$A(\lambda\eta_1 + (1-\lambda)\eta_2) \le \lambda A(\eta_1) + (1-\lambda)A(\eta_2)$$

Property 2 (First-order derivatives). The first derivative of $A(\eta)$ w.r.t. η is the expected value of T(x), i.e.,

$$\frac{\partial A(\eta)}{\partial \eta} = \mathbb{E}_{p(x)}[T(x)]$$

Property 3 (Second-order derivatives). The second derivative of $A(\eta)$ w.r.t. η is variance of T(x), i.e.,

$$\frac{\partial^2 A(\eta)}{\partial^2 \eta} = \mathbb{E}_{p(x)}[T^2(x)] - \mathbb{E}_{p(x)}[T(x)]^2$$

Basic Distributions

Bernoulli Distribution. This distribution is discrete and deals with variables that can just take on 2 values $(x \in \{0, 1\})$:

$$p(x) = \pi^x (1 - \pi)^{1 - x}$$

The Bernoulli distribution is in fact a part of the exponential family:

$$p(x) = \exp\left(x\log(\pi)\right) \exp\left((1-x)\log(1-\pi)\right)$$
$$= \exp\left(x\log(\pi) + \log(1-\pi) - x\log(1-\pi)\right)$$
$$= \exp\left(x\log\left(\frac{\pi}{1-\pi}\right) + \log(1-\pi)\right)$$

On comparing with 8.1 we can see that

$$h(x) = 1, \eta = \log\left(\frac{\pi}{1-\pi}\right), T(x) = x, A(\eta) = -\log(1-\pi)$$

Gaussian Distribution. This is the standard normal distribution that is often used for the purpose of simulating noise. The pdf p(x) is:

$$p(x) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right) \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right) \exp\left(\frac{-x^2+2x\mu}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right) \exp\left(\left[\frac{\mu}{\sigma^2} \quad \frac{-1}{2\sigma^2}\right] \begin{bmatrix} x\\ x^2 \end{bmatrix} - \frac{\mu^2}{2\sigma^2}\right)$$

On comparing this with 8.1, we get:

$$h(x) = \frac{1}{\sigma\sqrt{2\pi}}, \eta = \begin{bmatrix} \frac{\mu}{\sigma^2} \\ \frac{-1}{2\sigma^2} \end{bmatrix}, T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}, A(\eta) = \frac{\mu^2}{2\sigma^2}$$

Poisson Distribution.

$$p_{\lambda}(x) = \frac{\lambda^{x} \exp(-\lambda)}{x!}$$

$$= \frac{\exp(x \log \lambda - \lambda)}{x!}$$
(8.3)

On this with 8.1 we can see that

$$h(x) = \frac{1}{x!}, \eta = \log(\lambda), T(x) = x, A(\eta) = \lambda$$

8.2.2 Energy-based Models (EBM)

Energy-based models are more general than the exponential family. They are of the following form:

$$p(x) = \exp(f(x) - A(f))$$
 (8.4)

A is the partition function and takes in the function f as input. It is of the form:

$$A(f) = \log \int \exp(f(x))dx$$
(8.5)

This normalizes p(x) such that $\int p(x)dx = 1$,

The function f in energy-based models could be a neural network.

Ising Model. The Ising Model is a specific example of energy-based models that is widely used in image denoising tasks. x is a set of discrete variables such that

$$x = [x_1, x_2, \dots, x_k], x_i \in \{-1, 1\}$$

The probability distribution is then proportional to the following exponential quantity:

$$p(x) \propto \exp(-\mu^T x - x^T W x) \tag{8.6}$$

Specifically it is of the form:

$$p(x) = \exp(-\mu^T x - x^T W x - A(u, w))$$
(8.7)

The partition function is given by the following:

$$A(u,w) = \log\left[\sum_{x \in \{+1,-1\}^k} \exp(-\mu^T x - x^T W x)\right]$$
(8.8)

8.2.3 Latent Variable Model

The latent variable model is a *stochastic* model of the following form:

$$p(x) = \int p(x|z)p(z)dz$$
(8.9)

where p(x|z) and p(z) are both distributions from the exponential family. This model maps the distribution p(z) to the distribution p(x).

Gaussian Mixture Models. Gaussian mixture models are a type of latent variable models. The marginal distribution over z is given by:

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$
(8.10)

The condition distribution p(x|z) is given by:

$$p(x|z) = \mathcal{N}(\mu_k, \sigma_k^2) \tag{8.11}$$

Latent Dirichlet Allocation (LDA). LDA is another example of a latent variable model that is used in NLP tasks such as corpus generation.

Diffusion Model. The diffusion model is a special case of latent variable model that follows a Markov chain. Since it is a Markov chain, each state is dependently on only the previous state. Thus, if we have a final state x, beginning state z_o , and intermediate states $z_1, z_2, \ldots, z_{k-1}, z_k$, the probability distribution is given by:

$$p(x) = \int p(x|z_k)p(z_k|z_{k-1})\dots p(z_1|z_o)p(z_0)dz_0^k$$
(8.12)

8.2.4 Normalizing Flow Model

The normalizing flow is a *deterministic* model that allows us to map a simple distribution to a more complex one. We have latent variable Z and observed variable X and a function f such that f(Z) = X. This function f must be invertible so there must be a function g such that g(f(z)) = z.

We sample $z \sim p(z)$, then we have x = f(z). We can then use change of variables to calculate the distribution q(x):

$$q(x) = p(f^{-1}(x)) * \left| \det \frac{\partial f^{-1}(x)}{\partial z} \right|$$
(8.13)

8.2.5 Autoregressive Model (ARM)

Autoregressive models use all of the previous time steps in order to calculate the probability of the current state. The joint distribution of states $x_1, x_2, \ldots x_k$ is given by:

$$p(x_1, x_2, \dots, x_k) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)\dots p(x_k|x_{< k})$$
(8.14)