
CSE6243: Advanced Machine Learning Fall 2023

Lecture 9: Neural Network Revisit
Lecturer: Bo Dai Scribes: Zhaoyu Xu & Mian Wu

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Recap

Last week we mainly discussed about the Density/Distribution Parametrization, specifically –

• Exponential Family, which is defined by:

p(x) = h(x) exp
󰀃
ηTT (x)−A(η)

󰀄

A(η) = log

󰀕󰁝
h(x) exp

󰀃
ηTT (x)

󰀄
dx

󰀖

• Generalizations: Energy-based Models (EBM), Autoregressive Model (ARM), VAE (and Diffusion)

• Topics mentioned but haven’t been thoroughly discussed yet:

– Deep version of these models

– Claim: Most of the learning problems can be reformulated into distribution fitting (Today)

9.2 New Content

We will start from linear models, and then we will see how we can generalize the linear models to neural
network, and what is the generic formation of neural network.

9.2.1 Learning as Distribution Fitting

Recall that we have talked about two major components in learning -

󰀝
(1) optimization
(2) posterior estimation

Example 9.2.1 (Regression as Conditional Gaussian Fitting) Given n data {xi, yi}ni=1 with condi-
tion model P (y|x;w) = N

󰀃
w⊤x,σ

󰀄
, we have that the Maximum Likelihood Estimation (MLE) of this

problem: maxw
1
n

󰁓n
i=1 logP (y|x;w) ⇐⇒ minw

1
n

󰁓n
i=1

󰀃
yi − w⊤xi

󰀄2
, which is the minimization of the

Squared Loss (i.e., Least Square).

9-1

9-2 Lecture 9: Neural Network Revisit

Example 9.2.2 (Binary Classification) Given n data {xi, yi}ni=1 with condition model P (y|x;w) = π(x)y·
(1 − π(x))(1−y) (i.e., Bernoulli Distribution), where π(x) = σ

󰀃
w⊤x

󰀄
, σ(a) = 1

1+e−a ∈ (0, 1) is the sig-

moid function, we have that the MLE: maxw
1
n

󰁓n
i=1 log p (yi | xi, w) ⇐⇒ minw − 1

n

󰁓n
i=1 yi log σ

󰀃
w⊤xi

󰀄
+

(1− yi) log
󰀃
1− σ

󰀃
w⊤xi

󰀄󰀄
, which is the minimization of the log-loss/binary cross-entropy loss.

Example 9.2.3 (Multi-Class Classification) Given n data {xi, yi}ni=1 with condition model P (y|x;w) =
󰁔k

i=1 πi(x)
1i(y), where y ∈ {1, · · · , k}, 1i(y) is the index function 1i(y) =

󰀫
1 if y = i

0 otherwise
. Note that here

we want to simulate the model as in Binary Classification, thus naturally we want the πi(x) to indicate the
probability that a sample x is from class i, which requires us: πi(x) ∈ (0, 1) and

󰁓
i πi(x) = 1. A possible

choice would be the softmax function: πi(x) =
exp(w⊤

i x)
󰁓

j exp(w⊤
j x)

, under which the MLE of this problem would be

equivalent to the minimization of the cross-entropy loss.

Example 9.2.4 (Unsupervised Learning/Word2vec) (Supplementary Content) For theWord2vec model,
we want to find a way to represent a word with a fixed-length vector, thus to ”quantify” those words for
future uses (for instance, calculate the similarity). Under the Word2vec structure, we have two models: skip-
gram (uses the conditional probability given a central word to generate other context words that surround
it) and CBOW (continuous bag of words, uses the conditional probability given the surrounding context
words to generate the central word). Specifically, given a word dictionary, V = {0, 1, . . . , |V|−1}, for a word
indexed as i, its vector is represented as vi ∈ Rd when it is the central target word, and ui ∈ Rd when it is
a context word.

Then, for the skip-gram model, the conditional probability of generating the context word wo for a given

central target word wc can be formulated in the softmax manner: P (wo | wc) =
exp(u⊤

o vc)
󰁓

i∈V exp(u⊤
i vc)

. For a

sentence of length T with words w(1), · · · , w(T), assuming independent generation, with context window size
m, the likelihood function of the skip-gram model is then the joint probability of generating all the context
words given any center word:

󰁔T
t=1

󰁔
−m≤j≤m,j ∕=0 P

󰀃
w(t+j) | w(t)

󰀄
.

Likewise, for the CBOW model, the conditional probability of generating a central target word from the

given context word is: P (wc | wo1 , . . . , wo2m) =
exp(1

2mu⊤
c (vo1

+...,+vo2m))
󰁓

i∈V exp(1
2mu⊤

i (vo1
+...,+vo2m))

=
exp(u⊤

c vo)
󰁓

i∈V exp(u⊤
i vo)

, where

Wo = {wo1 , . . . , wo2m} and vo = (vo1 + . . . ,+vo2m) /(2m). Then, for a sentence of length T , the likelihood
function of the CBOW model is the probability of generating all center words given their context words:󰁔T

t=1 P
󰀃
w(t) | w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)

󰀄
. Maximizing these likelihood functions will eventually

lead us to the minimization of the corresponding losses of the Word2vec model.

9.2.2 Beyond Linear to Nonlinear - Neural Network

Recall that while we generalize the exponential family to EBM, the process is like:
󰀝

p(x) = h(x) exp
󰀃
ηTT (x)−A(η)

󰀄

A(η) = log
󰀃󰁕

h(x) exp
󰀃
ηTT (x)

󰀄
dx

󰀄 →
󰀝

p(x) = exp(f(x)−A(f))
A(f) = log

󰁕
exp(f(x))dx

Now for a basic linear representation f(x) = w⊤x, we can also generalize it to non-linear conditions by
introducing non-linear basis ϕ(x), i.e., f(x) = w⊤x → f(x) = w⊤ϕ(x), and that’s basically how we organize
a neural network, where the basis ϕ(x) is usually called the activation function, commonly used ones are–

• Sigmoid: ϕ(x) = 1
1+e−x

https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1301.3781.pdf

Lecture 9: Neural Network Revisit 9-3

• Radial Basis Function (RBF): ϕ(x) = exp
󰀓
−󰀂x−µ󰀂2

σ2

󰀔

• Rectified Linear Units (ReLU): ϕ(x) = max(0, x)

To further generalize such 1-layer naive neural network, we can simply stack more layers by function compo-
sition (Multilayer Perceptron, MLP): fw(x) = w⊤

3 ·ϕ3

󰀃
w⊤

2 · ϕ2

󰀃
w⊤

1 · ϕ1(x) + b1
󰀄
+ b2

󰀄
+ b3 = h3 ◦h2 ◦h1(x),

where one can keep doing this by defining: hi(x) = ω⊤
i · ϕi(x) + bi. However, since such general formation

of Neural Network is sometimes too flexible, thus in practice we usually introduce additional structures to
the network (e.g., CNN/RNN/Transformer, etc.), all of which basically only changes how to compose the
functions.

9.2.3 ”Solving” Neural Networks from a New Perspective

Having formulated the model of Neural Network, now we naturally care about how to find the ”best” param-
eters (i.e., ”solve” the neural network) to minimize the corresponding loss function, i.e., minw Loss (fw(x), y).
From the first section (Convex Optimization), we have introduced the first-order method (Stochastic) Gra-
dient Descent, which is currently (one of) the dominant algorithms, i.e., wt+1 = wt − η∇w Loss (fw(x), y).
To find the gradient ∇w Loss (fw(x), y), as introduced in Introductory ML courses (for instance, Notes on
Back-Prop), normally we shall use back-propagation (i.e., Chain Rule), which can be somewhat tedious. Now
we shall provide a new (and even more generalized) perspective to ”solve” the neural network - Converting
it to an Optimization Problem.

Recall that for an l-layer neural network as shown in the figure above, we have the forward-propagation
relationship: zi = hi (zi−1) for i = 1, · · · , l (denote x = z0), thus we can represent the solving process of such
neural network by:

min Loss
󰀃
zl
󰀄

s.t. zl = hl

󰀃
zl−1

󰀄

zl−1 = hl−1

󰀃
zl−2

󰀄

...

z1 = h1(x)

which is actually quite intuitive, as the objective function defines our target of the solving process (i.e.,
minimizing the loss function), where the conditions define the structure of the problem that we have to
satisfy (i.e., the forward-propagation relationship).

To solve such (equality) constrained optimization problem, we can use the Lagrange Multiplier Method by

constructing Lagrange Function: L
󰀃󰀋

zi
󰀌
,
󰀋
λi
󰀌󰀄

= Loss
󰀃
zℓ
󰀄
−

󰁓ℓ
i=1

󰀃
λi
󰀄⊤ 󰀃

zi − hi

󰀃
zi−1

󰀄󰀄
, and solving the

https://cs229.stanford.edu/notes-spring2019/backprop.pdf

9-4 Lecture 9: Neural Network Revisit

system with KKT conditions, i.e.,

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

∇zlL = ∇zl Loss
󰀃
zl
󰀄
− λl = 0

∇ziL =
󰀃
∇zihi+1

󰀃
zi
󰀄󰀄⊤

λi+1 − λi = 0 1 󰃑 i 󰃑 l − 1

∇ωiL =
󰀃
∇ωihi

󰀃
zi−1

󰀄󰀄⊤
λi = 0 1 󰃑 i 󰃑 l

∇λiL = zi − hi

󰀃
zi−1

󰀄
= 0 1 󰃑 i 󰃑 l

which would bring us the same result as solving with back-propagation (chain rule).

Furthermore, one may have also noticed that the above paradigm of:

min Loss (max Obj.)

s.t. Problem Structures/Relationships

can be quite universal. Actually, we can apply such re-formulation (to optimization problems) to a whole
bunch of models, not just limited to Neural Networks. Even for traditional algorithmic problems that are
seemingly not directly differentiable (for instance, Sorting & Ranking, Top-k, etc.), we can still find a way
to convert it to a proper optimization problem (see [FP22]), which we shall further discuss in Module III.

https://arxiv.org/pdf/2209.00616.pdf

