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Machine Learning Advances in Vision and Language

Text to image / video Language generation
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Behind These Advances: Foundation Models 
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➢ Scientific discoveries

Modeling the Data is Not Enough

4[1] Yang et al. Foundation Models for Decision Making. arXiv 2023.

➢ Failed robot executions
➢ Faster programs

Issue: Not enough data Issue: Want better than data

➢ Rare events, safety



Promises of Sequential Decision Making

5[1] Sutton and Barto. Reinforcement Learning: An Introduction.1999.

Issue: Not enough data Issue: Want better than data

Solution: Collect more data Solution: Optimize actions



Promises of Sequential Decision Making
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Solution: Collect more data Solution: Optimize actions

➢ Reinforcement learning
➢ Planning, search
➢ Control, optimization

Issue: Not enough data Issue: Want better than data



Challenges of Sequential Decision Making
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Challenge: Sample Efficiency Challenge: Generalization

Solution: Collect more data Solution: Optimize actions

[1] Minh et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015.

➢ RL: 38 days
➢ Human: mins

[2] Zhang et al. A Study on Overfitting in Deep Reinforcement Learning. arXiv 2018.



Sequential Decision Making Lacks Broad Knowledge
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Physics Language

“Bounce the 
ball back.”

Vision

and



How Foundation Models Acquire Broad Knowledge
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Representation 
Learning

Internet Data

➢ Contrastive learning 
(SimCLR, CLIP)

[1] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. PMLR 2020.
[2] Radford et al. Learning Transferable Visual Models From Natural Language Supervision. PMLR 2021.

[5] Brown et al. Language Models are Few-Shot Learners. NeurIPS 2020.
[6] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2022.

Reasoning
Input

Output

Intermediate steps

[3] Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.
[4] He et al. Masked Autoencoders are Scalable Vision Learners. CVPR 2022.

➢ Denoising autoencoding 
(BERT, MAE)



Today’s Talk: Foundation Models for Decision Making
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ReasoningRepresentation 
Learning

From suboptimal data

[ICML21, NeurIPS21, 
ICLR22, ICML22] [NeurIPS22]

State

Action

Planning, search algos

[NeurIPS23, arXiv23, arXiv23]

Internet Data

http://proceedings.mlr.press/v139/yang21h/yang21h.pdf
https://proceedings.neurips.cc/paper/2021/file/fd00d3474e495e7b6d5f9f575b2d7ec4-Paper.pdf
https://openreview.net/pdf?id=6q_2b6u0BnJ
https://proceedings.mlr.press/v162/zhang22x/zhang22x.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ebdb990471f653dffb425eff03c7c980-Paper-Conference.pdf
https://arxiv.org/pdf/2302.00111.pdf
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Optimal policy
Learning from Expert Demonstrations
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Imitation learning:



Representation Learning from Suboptimal Data

13[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.

Pretraining

Suboptimal data



Representation Learning from Suboptimal Data

14[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.

Pretraining

Suboptimal data

Imitation with 
representations:



Intuition: Why Representation Learning Helps

15[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.

Ø Smaller hypothesis space.
Ø Need fewer expert demos.

Imitation with 
representations:

Imitation learning:
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Learning Goal

Theorem: For any expert policy 𝛑*, representation 𝜙, and policy 𝛑Z, PerfDiff(𝛑Z , 𝛑*) is bounded 
by:

Performance Difference with Representations

[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.

Ø Expect improvement when          and        are small. 
Ø Vanilla BC corresponds to                 and                 . 

Approx. dynamics
Downstream imitation in

Sample complexity



Empirical Results on Continuous Control
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Imitation

Offline RL

Online RL

[1] Yang and Nachum. Offline Pretraining for Sequential Decision Making. ICML 2021.

With representation 

Suboptimal 
data



Empirical Results on Atari Games

18[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.

Improvement % over Behavioral Cloning (BC) without representation learning



Additional Work
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Representation 
Learning

[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.
[2] Yang and Nachum. Offline Pretraining for Sequential Decision Making. ICML 2021.
[3] Yang et al. Near-Optimal Imitation with Suboptimal Data. ICLR 2022.
[4] Zhang, Ren, Yang, et. al. Linear MDPs via Contrastive Representations. ICML 2022.



Takeaways
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Representation 
Learning

➢ Use suboptimal data for representation learning.



Takeaways
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Representation 
Learning

➢ Use suboptimal data for representation learning.
➢ Contrastive learning and denoising autoencoding for 

learning approximate dynamics models.
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ReasoningRepresentation 
Learning

From suboptimal data

[NeurIPS22]

Input
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https://proceedings.neurips.cc/paper_files/paper/2022/file/ebdb990471f653dffb425eff03c7c980-Paper-Conference.pdf
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https://proceedings.mlr.press/v162/zhang22x/zhang22x.pdf
https://arxiv.org/pdf/2302.00111.pdf
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Teach Models to Do Math

1Input

Output 1.41

2

0.29

3

0.09

Train

4

?

TestSeems hard!
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How Did We Learn Math in School?

1Input

Output 1.41

2

0.29

3

0.09

4

?

Train

4
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Test
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How Did We Learn Math in School?

Quotient rule:

Product rule:

Chain rule:
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Teach Language Models to Do Math

Quotient rule:

Product rule:

Chain rule:

[1] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Language Models. NeurIPS 2022.

Understand. Do not memorize.

4

0.04

Intermediate reasoning steps Test
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How is Math Related to Decision Making?

Quotient rule:

Product rule:

Chain rule:

[1] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Language Models. NeurIPS 2022.

Understand. Do not memorize.

4

0.04

Intermediate reasoning steps Test
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Teach Models to Search



29

Teach Models to Search via Behavioral Cloning

Right Left

Train

?

Test
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Teach Models to Search via Procedure Cloning

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

1
2

30 0
0 0 0

U R
R R

U R
R R R

U R
R R R

U R
R R RR R R

U R

Right

U
R

BFS expand (keep track of actions)

BFS backtrack (retrieve actions)

1
2

34 0
5 0 0

1
2

34 5
5 5 0

Teach in agent’s “native” language.
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Teach Models to Search via Procedure Cloning

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

Emulate BFS search during test
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Navigation

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

Empirical Performance of Procedure Cloning

This work



Backtrack
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Procedure Cloning is General: MCTS

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

SimulateExpand



34

Navigation Games

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

Empirical Performance of Procedure Cloning
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Navigation Games Manipulation

[1] Yang et al. Chain-of-Thought Imitation with Procedure Cloning. NeurIPS 2022.

Empirical Performance of Procedure Cloning



Takeaways
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Reasoning in Agents
State

Action

Planning, search algos

➢ Teach intermediate 
computations.



Takeaways
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Reasoning in Agents
State

Action

Planning, search algos

Reasoning in LLMs
Input

Output

➢ Teach intermediate 
computations.

Natural language steps

➢ Don’t need to teach in 
human language. Teach 
in machine language.
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ReasoningRepresentation 
Learning
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Internet Data
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https://proceedings.mlr.press/v162/zhang22x/zhang22x.pdf
https://arxiv.org/pdf/2302.00111.pdf
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Human-Like Chatbot from Internet Language Data

Internet language data
Human-like chatbot
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World-Like Simulator from Internet Multimodal Data?

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Different state action spaces.
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Video and Text as Universal State and Action

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Subtitles: “Cut the pepper with knife.”



42[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Video and Text as Universal State and Action



43[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Caption: “A cat staring straight.”

Video and Text as Universal State and Action
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Video and Text as Universal State and Action
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<camera> 90°, <zoom> 1.5

Video and Text as Universal State and Action



46[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Video and Text as Universal State and Action



47[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Δ𝑥, Δ𝑦

Video and Text as Universal State and Action



48[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Video and Text as Universal State and Action



49[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Text-to-Video Generation as a Universal Simulator
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Text-to-Video Generation as a Universal Simulator
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Text-to-Video Generation as a Universal Simulator



54[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Text-to-Video Generation as a Universal Simulator

Temporally extended actions
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UniSim Demos

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Demo Link

file:///Users/sherryy/Documents/unisim/index.html


56

Application: Large-Scale “Online” RL

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Challenge: Sample Efficiency Challenge: GeneralizationUniversal Simulator
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Application: Large-Scale “Online” RL

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.

Universal SimulatorZero-shot real-world transfer
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Application: Search and Planning

[1] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[2] Du, Yang, et al. Video Language Planning. arXiv2023.

Search and planning in simulation
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Application: Search and Planning

[1] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[2] Du, Yang, et al. Video Language Planning. arXiv2023.

Search and planning in simulationZero-shot real-world transfer



Takeaways

60

Internet Data

➢ Rich interactive data on the internet to improve 
decision making.
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➢ Rich interactive data on the internet to improve 
decision making.

➢ LLMs, VLMs, text-to-video models parametrize 
different components of MDPs.



Takeaways
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Internet Data

➢ Rich interactive data on the internet to improve 
decision making.

➢ LLMs, VLMs, text-to-video models parametrize 
different components of MDPs.

➢ Large-scale “online” access through generative 
modeling for RL, search, planning.



Foundation Models for Control and Embodiment
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ReasoningRepresentation 
Learning

From suboptimal data

Input

Output

Planning, search algos

Internet Data



Foundation Models for Materials Discovery
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ReasoningRepresentation 
Learning

Internet Data

From suboptimal data

Input

Output

[1] Yang et al. Scalable Diffusion for Materials Discovery. arXiv 2023.



Big Picture: The Past and Future of FMDM

65
[1] Yang*, Nachum*, Dai* et al. Off-Policy Evaluation via the Regularized Lagrangian. NeurIPS 2020.
[2] Yang*, Dai*, Nachum* et al. Offline Policy Selection under Uncertainty. AISTATS 2022.

Algorithm: RL, planning, control, optimization.
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Algorithm



Big Picture: The Past and Future of FMDM
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[1] Lee*, Nachum*, Yang et al. Multi-Game Decision Transformers. NeurIPS 2022.
[2] Yang et al. Dichotomy of Control. ICLR 2023.
[3] Venuto*, Yang*, et al. Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

Transformer agent Multi-task environments

Model: Attention, transformers, autoregressive, diffusion.



Big Picture: The Past and Future of FMDM
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Model

Algorithm
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Foundation agent model Foundation world model
[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.
[2] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[3] Du, Yang, et al. Video Language Planning. arXiv2023.

Data: Internet text, image, video, action.
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Model Data

Algorithm

FMDM
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Model Data

Algorithm Ø Algorithm guarantees 
relies on assumptions 
of modelling flexibility 
and data coverage.

FMDM
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Model Data

Algorithm

Ø Models are improved by 
algorithms (RLHF) and 
interactive data.

FMDM

[1] Yang*, Du* et al. Probabilistic Adaptation of Text-to-Video Models. arXiv 2023.



Big Picture: The Past and Future of FMDM
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Model Data

Algorithm

Ø New data are produced / 
generated by deploying models 
and running algorithms.

FMDM



Thank You
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Model Data

Algorithm

FMDM



Summary
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ReasoningRepresentation 
Learning

Internet Data

➢ Learn dynamics and 
state representations.

➢ Learn intermediate 
steps of algorithms. 

➢ Learn large-scale 
agents and simulators. 



Outlook
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ModelAlgorithm Data

➢ RL, search, planning. ➢ MLPs, RNNs. ➢ (Single) task-specific. 
➢ Transformers, 

foundation models
➢ Multi-task, internet



● Representation learning
○ Sample efficiency
○ Contrastive learning and random Fourier features

77

Technical Details
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Representation Learning Sample Efficiency
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Contrastive Learning and Random Fourier Features

Approx. dynamics model

Define approx. dynamics model as EBM.

Minimizing KL reduces to contrastive learning.

Recover linearization via random Fourier features.
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Contrastive Learning and Random Fourier Features

Theorem: For any target policy 𝛑*, representation 𝜙, policy                                         and model 
error          measured with linear dynamics models:

Previous theorem:

Only need to minimize gradient of the objective, not objective itself.

Downstream Imitation Learning

Learning Goal Offline Representation Learning


