Foundation Models for Decision Making

Problems, Methods, and Applications

Sherry Yang Berkeley Google DeepMind

Machine Learning Advances in Vision and Language

6

What are Foundation Models?

Foundation models are large pre-trained neural networks used in machine learning and natural language processing. They form the foundation for various tasks and are trained on extensive internet text data, enabling them to grasp a wide range of knowledge and language patterns. Prominent examples include OpenAI's GPT series and Google's BERT model.

Text to image / video

Language generation

Behind These Advances: Foundation Models

JI

What are Foundation Models?

Foundation models are large pre-trained neural networks used in machine learning and natural language processing. They form the foundation for various tasks and are trained on extensive internet text data, enabling them to grasp a wide range of knowledge and language patterns. Prominent examples include OpenAI's GPT series and Google's BERT model.

Response from GPT-4

Modeling the Data is Not Enough

Issue: Not enough data

Scientific discoveries

➤ Rare events, safety

Issue: Want better than data

- Failed robot executions
- ➤ Faster programs

[1] Yang et al. Foundation Models for Decision Making. arXiv 2023.

Promises of Sequential Decision Making

Issue: Not enough data

Solution: Collect more data

Issue: Want better than data

Solution: Optimize actions

[1] Sutton and Barto. Reinforcement Learning: An Introduction.1999.

Promises of Sequential Decision Making

Issue: Not enough data

Solution: Collect more data

Issue: Want better than data

Solution: Optimize actions

- Reinforcement learning
- > Planning, search
- ➤ Control, optimization

Challenges of Sequential Decision Making

Solution: Collect more data

Challenge: Sample Efficiency

Solution: Optimize actions

Challenge: Generalization

RL: 38 days
Human[•] mins

[1] Minh et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015.[2] Zhang et al. A Study on Overfitting in Deep Reinforcement Learning. arXiv 2018.

Sequential Decision Making Lacks Broad Knowledge

Physics

"Bounce the ball back."

Language

Vision

How Foundation Models Acquire Broad Knowledge

Representation Learning

- Contrastive learning (SimCLR, CLIP)
- Denoising autoencoding (BERT, MAE)

[1] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. PMLR 2020.

- [2] Radford et al. Learning Transferable Visual Models From Natural Language Supervision. PMLR 2021.
- [3] Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.
- [4] He et al. Masked Autoencoders are Scalable Vision Learners. CVPR 2022.
- [5] Brown et al. Language Models are Few-Shot Learners. NeurIPS 2020.
- [6] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2022.

Today's Talk: Foundation Models for Decision Making

Representation Learning

From suboptimal data

[ICML21, NeurIPS21, ICLR22, ICML22]

Internet Data

[NeurlPS23, arXiv23, arXiv23]

Today's Talk: Foundation Models for Decision Making

Representation Learning

From suboptimal data

[ICML21, NeurIPS21, ICLR22, ICML22]

Internet Data

[NeurlPS23, arXiv23, arXiv23]

Learning from Expert Demonstrations

S

 π_* Optimal policy

Imitation learning:

Representation Learning from Suboptimal Data

Suboptimal data

Pretraining

Representation Learning from Suboptimal Data

Intuition: Why Representation Learning Helps

Performance Difference with Representations

- > Expect improvement when $\epsilon_{R,T}$ and |Z| are small.
- > Vanilla BC corresponds to $\epsilon_{R,T} = 0$ and |Z| = |S|.

Empirical Results on Continuous Control

[1] Yang and Nachum. Offline Pretraining for Sequential Decision Making. ICML 2021.

Empirical Results on Atari Games

Improvement % over Behavioral Cloning (BC) without representation learning

Additional Work

Representation Learning

[1] Nachum and Yang. Provable Representation Learning for Imitation. NeurIPS 2021.
 [2] Yang and Nachum. Offline Pretraining for Sequential Decision Making. ICML 2021.
 [3] Yang et al. Near-Optimal Imitation with Suboptimal Data. ICLR 2022.
 [4] Zhang, Ren, Yang, et. al. Linear MDPs via Contrastive Representations. ICML 2022.

Representation Learning

 \succ Use suboptimal data for representation learning.

Representation Learning

 Use suboptimal data for representation learning.
 Contrastive learning and denoising autoencoding for learning approximate dynamics models.

$$\mathcal{P}_Z(\mathbf{\bullet}, a))$$

$$s,a,s' \, rightarrow s' \ \phi \ \phi$$

Today's Talk: Foundation Models for Decision Making

Representation Learning

From suboptimal data

[ICML21, NeurIPS21, ICLR22, ICML22]

Internet Data

[NeurlPS23, arXiv23, arXiv23]

Teach Models to Do Math

$$f(x) = \frac{x^2 - 1}{x\sqrt{x^2 + 1}}$$

f'(x)?

Seems hard!

How Did We Learn Math in School?

$$f(x) = \frac{x^2 - 1}{x\sqrt{x^2 + 1}}$$

f'(x)?

How Did We Learn Math in School?

$$f(x) = \frac{x^2 - 1}{x\sqrt{x^2 + 1}}$$

f'(x)?

Quotient rule:
$$f'(x) = \frac{(x^2 - 1)'x\sqrt{x^2 + 1} - (x^2 - 1)(x\sqrt{x^2 + 1})'}{x^2(x^2 + 1)}$$
Product rule:
$$\frac{d}{dx}x\sqrt{x^2 + 1} = x\frac{d}{dx}\sqrt{x^2 + 1} + \sqrt{x^2 + 1}.$$
Chain rule:
$$\frac{d}{dx}\sqrt{x^2 + 1} = \frac{d}{dx}(x^2 + 1)^{1/2} = \frac{1}{2}(x^2 + 1)^{-1/2}(2x) = \frac{x}{\sqrt{x^2 + 1}}.$$

Teach Language Models to Do Math

[1] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Language Models. NeurIPS 2022.

How is Math Related to Decision Making?

[1] Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Language Models. NeurIPS 2022.

Teach Models to Search

a?

Teach Models to Search via Behavioral Cloning

a?

Teach Models to Search via Procedure Cloning

Teach Models to Search via Procedure Cloning

Empirical Performance of Procedure Cloning

Navigation

Procedure Cloning is General: MCTS

Empirical Performance of Procedure Cloning

Empirical Performance of Procedure Cloning

Takeaways

Takeaways

Reasoning in LLMs Input

Output

computations.

 \succ Don't need to teach in human language. Teach in machine language.

Today's Talk: Foundation Models for Decision Making

Representation Learning

From suboptimal data

[ICML21, NeurIPS21, ICLR22, ICML22]

Internet Data

[NeurlPS23, arXiv23, arXiv23]

Human-Like Chatbot from Internet Language Data

\$

Internet language data

Human-like chatbot

What are Foundation Models?

Foundation models are large pre-trained neural networks used in machine learning and natural language processing. They form the foundation for various tasks and are trained on extensive internet text data, enabling them to grasp a wide range of knowledge and language patterns. Prominent examples include OpenAI's GPT series and Google's BERT model.

World-Like Simulator from Internet Multimodal Data?

Different state action spaces.

Internet texts, images

Caption: "A cat staring straight."

a

 \boldsymbol{S}

$$-- \rightarrow \underbrace{\Delta x_1, \Delta \omega_1, \Delta x_2, \Delta \omega_2}_{a_0}$$

Temporally extended actions

UniSim Demos

Demo Link

Application: Large-Scale "Online" RL

Challenge: Sample Efficiency

Application: Large-Scale "Online" RL

Zero-shot real-world transfer

Put red star towards blue cube

Universal Simulator

Application: Search and Planning

Put the fruits into the top drawer

Search and planning in simulation

[1] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[2] Du, Yang, et al. Video Language Planning. arXiv2023.

Application: Search and Planning

Zero-shot real-world transfer

Search and planning in simulation

[1] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[2] Du, Yang, et al. Video Language Planning. arXiv2023.

Internet Data

Rich interactive data on the internet to improve decision making.

Internet Data

- Rich interactive data on the internet to improve decision making.
- LLMs, VLMs, text-to-video models parametrize different components of MDPs.

Internet Data

- Rich interactive data on the internet to improve decision making.
- LLMs, VLMs, text-to-video models parametrize different components of MDPs.
- Large-scale "online" access through generative modeling for RL, search, planning.

Foundation Models for Control and Embodiment

Representation Learning

From suboptimal data

Internet Data

Foundation Models for Materials Discovery

Representation Learning

Internet Data

[1] Yang et al. Scalable Diffusion for Materials Discovery. arXiv 2023.

Algorithm: RL, planning, control, optimization.

[1] Yang*, Nachum*, Dai* et al. Off-Policy Evaluation via the Regularized Lagrangian. NeurIPS 2020.
 [2] Yang*, Dai*, Nachum* et al. Offline Policy Selection under Uncertainty. AISTATS 2022.

Model: Attention, transformers, autoregressive, diffusion.

Transformer agent

Multi-task environments

Lee*, Nachum*, Yang et al. Multi-Game Decision Transformers. NeurIPS 2022.
 Yang et al. Dichotomy of Control. ICLR 2023.
 Venuto*, Yang*, et al. Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

Data: Internet text, image, video, action.

Foundation agent model

Foundation world model

[1] Yang et al. Learning Interactive Real-World Simulators. arXiv 2023.
[2] Du*, Yang* et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
[3] Du, Yang, et al. Video Language Planning. arXiv2023.

Models are improved by algorithms (RLHF) and interactive data.

Algorithm

[1] Yang*, Du* et al. Probabilistic Adaptation of Text-to-Video Models. arXiv 2023.
Big Picture: The Past and Future of FMDM

Thank You

Summary

Representation Learning

Reasoning

Internet Data

- Learn dynamics and state representations.
- Learn intermediate steps of algorithms.
- Learn large-scale agents and simulators.

Outlook

Algorithm

Model

 \succ RL, search, planning.

- ➤ MLPs, RNNs.
- Transformers,
 foundation models

Data

- ➤ (Single) task-specific.
- ➤ Multi-task, internet

Technical Details

- Representation learning
 - Sample efficiency
 - Contrastive learning and random Fourier features

Representation Learning Sample Efficiency

Lemma 11. Let $\rho \in \Delta(\{1, \ldots, k\})$ be a distribution with finite support. Let $\hat{\rho}_n$ denote the empirical estimate of ρ from n i.i.d. samples $X \sim \rho$. Then,

$$\mathbb{E}_{n}[D_{\mathrm{TV}}(\rho \| \hat{\rho}_{n})] \leq \frac{1}{2} \cdot \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \sqrt{\rho(i)} \leq \frac{1}{2} \cdot \sqrt{\frac{k}{n}}.$$
(66)

Lemma 12. Let $\mathcal{D} := \{(s_i, a_i)\}_{i=1}^n$ be i.i.d. samples from a factored distribution $x(s, a) := \rho(s)\pi(a|s)$ for $\rho \in \Delta(S), \pi : S \to \Delta(A)$. Let $\hat{\rho}$ be the empirical estimate of ρ in \mathcal{D} and $\hat{\pi}$ be the empirical estimate of π in \mathcal{D} . Then,

$$\mathbb{E}_{\mathcal{D}}[\mathbb{E}_{s\sim\rho}[D_{\mathrm{TV}}(\pi(s)\|\hat{\pi}(s))]] \le \sqrt{\frac{|S||A|}{n}}.$$
(67)

Theorem 4. Consider the setting described above. Let $\phi_M := OPT_{\phi}(\mathcal{D}_M^{\text{off}})$ and $\pi_{N,Z}$ be the policy resulting from BC with respect to ϕ_M . Then we have,

$$\mathbb{E}_{\mathcal{D}^{\pi_*}}[\operatorname{PerfDiff}(\pi_{N,Z},\pi_*)] \le (1 + D_{\chi^2}(d^{\operatorname{off}} \| d^{\pi_*})^{\frac{1}{2}}) \cdot \epsilon_{\mathrm{R},\mathrm{T}}(\phi_M) + C \cdot \sqrt{\frac{|Z||A|}{N}}, \quad (15)$$
where $C = \frac{2R_{\max}}{(1-\gamma)^2}$

Contrastive Learning and Random Fourier Features

$$\operatorname{PerfDiff}(\pi_{Z},\pi_{*}) \leq (1+D_{\chi^{2}}(\textcircled{l}))^{\frac{1}{2}}) \cdot \overbrace{\epsilon_{\mathrm{R},\mathrm{T}}} + C\sqrt{\frac{1}{2}} \underbrace{\mathbb{E}_{z \sim d_{Z}^{\pi_{*}}}[D_{\mathrm{KL}}(\pi_{*,Z}(z) \| \pi_{Z}(z))]}_{= \operatorname{const}(\pi_{*},\phi) + J_{\mathrm{BC},\phi}(\pi_{Z})}$$
$$\underbrace{D_{\mathrm{KL}}(\mathcal{P}(\overbrace{e},a) \| \mathcal{P}_{Z}(\overbrace{e},a))$$

 $\overline{P}(s'|s,a) \propto \rho(s') \exp\{-||\phi(s) - g(s',a)||^2\} \text{ Define approx. dynamics model as EBM.}$ Minimizing KL reduces to contrastive learning. $\overline{D_{\text{KL}}(P(s,a) \| \overline{P}(s,a))} = \mathbb{E}_{s' \sim P(s,a)}[\|\phi(s) - g(s',a)\|^2] + \log \mathbb{E}_{\tilde{s}' \sim \rho} \exp\{-\|\phi(s) - g(\tilde{s}',a)\|^2\}$

Recover linearization via random Fourier features. 79

Contrastive Learning and Random Fourier Features

Theorem: For any target policy π^* , representation ϕ , policy $\pi_{\theta}(z) := \operatorname{softmax}(\theta^{\top} z)$ and model error $\epsilon_{R,T}$ measured with linear dynamics models:

$$\frac{\operatorname{PerfDiff}(\pi_{\theta}, \pi_{*})}{\operatorname{Learning Goal}} \leq \underbrace{ (1 + D_{\chi^{2}} (d^{\pi_{*}} \| d^{\operatorname{off}})^{\frac{1}{2}}) \cdot \epsilon_{\mathrm{R,T}}}_{\operatorname{Offline Representation Learning}} + \frac{C \cdot \left\| \frac{\partial}{\partial \theta} J_{\mathrm{BC},\phi}(\pi_{\theta}) \right\|_{1}}{\operatorname{Downstream Imitation Learning}}$$

Previous theorem:

PerfDiff
$$(\pi_Z, \pi_*) \le (1 + D_{\chi^2} (d^{\pi_*} || d^{\text{off}})^{\frac{1}{2}}) \cdot \epsilon_{\text{R,T}} + C \sqrt{\frac{1}{2}} \underbrace{\mathbb{E}_{z \sim d_Z^{\pi_*}} [D_{\text{KL}}(\pi_{*,Z}(z) || \pi_Z(z))]}_{= \operatorname{const}(\pi_*, \phi) + J_{\text{BC}, \phi}(\pi_Z)}$$

Only need to minimize gradient of the objective, not objective itself.