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10.1 Review

• A neural network is simply a function approximator, separate from the loss function you aim to optimize
(parameterization of the model).

• Introduce the history of neural networks: Linear Model → Single-layer MLP (Kernel methods) →
Multi-layer perceptron → Various specialized neural networks, including:

– Convolutional Neural Networks (CNNs)

– Residual Networks (ResNets)

– Recurrent Neural Networks (RNNs)

– Transformers

• Each of the above models is motivated by practical problems and tailored for different types of structured
data.

10.2 Energy Based Model (EBM)

Although EBMs are not currently popular in the machine learning community, this model serves as the
foundation for various generative models that we shall discuss in the future, such as GANs, diffusion models,
and normalizing flows.

10.2.1 What is EBM?

An EBM is a model of the form

P[x] =
exp(fΘ(x))

Z(Θ)
(EBM)

where the probability of the vector x is given in terms of a energy (potential) function fΘ(x) parameterized
by Θ. In order the to make the probability measure integrate to one, we normalize P by the partition function

Z(Θ) =

∫
exp(fΘ(x))dx. (PF)
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Figure 10.1: Restricted Boltzmann Machine (RBM)

An EBM may also be defined for a conditional distribution

P[y | x] = exp(fΘ(x,y))

Z(x,Θ)
(CEBM)

Z(x,Θ) =

∫
exp(fΘ(x,y))dy (CPF)

We note (EBM) is similar to the exponential family

P[x] =
exp(ηTT (x))

Z(η)
(EF)

except that there are no sufficient statistics T (·), and you replace ηTT (x) with fΘ(x).

10.2.2 Examples of Energy Based Models

10.2.2.1 Markov Random Field (MRF)

Consider a collection of variables [xi]
n
i=1, and the following collection of factors

P[x] ∝ exp(fΘ(x)) := exp

log

 d∏
i=1

Ψi(xi)
∏
i ̸=j

Φi,j(xi,xj)

 (MRF)

which is same as to say

fΘ(x) :=

d∑
i=1

logΨi(xi) +
∑
i ̸=j

logΨi,j(xi,xj) (10.1)

10.2.2.2 Restricted Boltzmann Machine (RBM)

Consider the bi-partite graphical model given in Figure 10.1. where x are the focal variables and z is latent.
The two are related by the joint distribution

fΘ(x, z) = xTWz+ zTb+ xT c (RBM)

which may be marginalized as

P[x] =
1

Z

∑
z

exp fΘ(x, z) (10.2)
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Both of these models are not used widely, but RBM can be used to build a connection to standard regression
model. Indeed if

P[y | x] ∝ exp(fΘ(x,y)) (10.3)

fΘ(x,y) = (Wy)TΨ(x) (10.4)

Then with appropriate Ψ you have different kinds of regression (linear, logistic y ∈ {0, 1}, softmax y ∈ [k]).

10.2.2.3 Conditional Random Field (CRF)

RBM and MRF were for were for P[x]. However, we can also construct similar model for conditional case
P[y | x] for example the following collection of potential functions

fΘ(x,y) =
∑
i,j

logΨi,j(xi,yj) (CRF)

Then you have

P[y | x] = exp(fΘ(x,y))

Z(x,Θ)
=

exp(
∑

i,j logΨi,j(xi,yj))

Z(x,Θ)
=

∏
i,j Ψi,j(xi,yj)

Z(x,Θ)
(10.5)

Z(x,Θ) =

∫
exp(fΘ(x,y))dy =

∫ ∏
i,j

Ψi,j(xi,yj)dy (10.6)

where your partition function is similar to (MRF), but the partition function is only partially marginalized
(equal to one conditioned on one object).

From a historical perspective, these were popular around the start of the century, but these forms still
manifest themselves implicitly today.

10.2.3 Motivation of EBM

We ought to discuss the origin of (EBM), which follows from principle of maximum entropy.

Consider the following variational problem across a space of distributions ∆

max
P∈∆

H(P) :=−
∫

P[x] logP[x]dx

s.t. EP[x][f(x)] = µ

(MaxEnt)

where is f is some vector of statistics on x. The principle of maximum entropy is to choose, from among the
distributions P consistent with the data, the distribution P∗ whose Shannon entropy is maximal.

We may solve (MaxEnt) by the calculus of variations, associate it with the functional

L(P, α,η) =
∫

P[x] logP[x]dx− α

((∫
P[x]dx

)
− 1

)
−
(
⟨η,

∫
f(x)P[x]dx⟩ − µ

)
(10.7)

where we have Lagrange multipliers α,η. The entropy shall attain its maximum when the functional derivative
is equal to zero.

δL
δP

[P] = logP[x] + 1− α− ⟨η, f(x)⟩ = 0 (10.8)
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It remains to solve for P,

0 = logP[x] + 1− α− ⟨η, f(x)⟩ (10.9)

=⇒ logP[x] = ⟨η, f(x)⟩+ α− 1 (10.10)

=⇒ P[x] = exp(⟨η, f(x)⟩+ α− 1) (10.11)

=⇒ P[x] = exp(⟨η, f(x)⟩)/Z (10.12)

=⇒ P[x) ∝ exp(⟨η, f(x)⟩). (10.13)

To prove that this is indeed the maximum, you may take the second variation. Note that this is exactly the
form of the exponential family, and the underlying motivation for why EBM takes a similar form.

10.2.4 Pros and Cons of EBM

Pros:

Easy to Analyze Relationships between Different Coordinates: If you have fΘ(x), you can
analyze the relationships between different coordinates of the data. This approach is already
widely used in representation learning. For instance, consider an EBM of form

P[x,y] ∝ exp(Ψ(x)Tϕ(y)) (10.14)

here x and y might represent images or text, and you want to select the y that when embedded
maximally aligns the embeddings x. By using the potential functions in (10.14), it becomes easy
to extract relationships. This is what models like CLIP and SimCLR do (even though they do not
explicitly state they are EBMs).

Model Compositionality You can easily combine different EBMs. For example, given two models

P1[x] ∝ exp fΘ1
(x) (10.15)

P2[x] ∝ exp fΘ2
(x) (10.16)

you can combine them as

P[x] ∝ P1[x]P2[x] = exp(fΘ1(x) + fΘ2(x)), (10.17)

allowing you to capture the combined effect of both models by multiplication.

Cons:

Hard to Sample: When x is high-dimensional and f(x) is complex, sampling the random variable X
becomes computationally expensive (have to resort to Markov Chain Monte Carlo (MCMC), see
Section 10.2.5).

Hard to Evaluate: To compute P[x] = exp(fΘ(x))/Z(Θ), even if fΘ(x) is easy to evaluate, calculating
the partition function Z(Θ) requires solving a high-dimensional integral, which is difficult.

Hard to Learn: The MLE for an EBM is given by as:

max
Θ

1

n

n∑
i=1

fΘ(xi)− logZ(Θ) (10.18)

Solving this exactly requires evaluating the partition function Z(Θ) for each Θ, which is computa-
tionally intractable. Indeed, a number of NP-Hard decision problems can be reduced to optimal
EBM parameter learning.
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10.2.5 Sampling from EBM

Recall the MCMC procedure, which allows us to sample from P as follows without computing the partition
function:

1. x ∼ P0(x) P0 is the starting distribution

2. for t := 1 . . .∞

• xt+1 ∼ T (· | xt) Transition Operator

Metropolis-Hastings Scheme:

(a) y ∼ Q[· | xt] Q is some proposal distribution (e.g., N (0,Σ)), Straightforward

(b) u ∼ U [0, 1] Straightforward

(c) A(xt,y) := min
{
1, P[xt]Q[xt|y]

P[xt]Q[y|xt]

}
Calculate Acceptance Probability, Straightforward

– Note that A(xt,y) := min
{
1, P[xt]Q[xt|y]

P[xt]Q[y|xt]

}
= min

{
1, exp(fΘ(y))Q[xt|y]

exp(fΘ(xt))Q[y|xt]

}
– So you do not need to compute the partition function in (EBM).

– If you choose a nice Q is it also easy to construct marginals.

(d) xt+1 :=

{
y u ≤ A(xt,y)

xt u > A(xt,y)

Langevin Scheme: Consider the overdamped Langevin Itô diffusion

ẋt = xt +∇ logP[x] +
√
2ϵ̇

for which we approximate via the Euler–Maruyama method

(a) y = xt + τ∇ logP[xt] + ϵ

(b) Apply Metropolis-Hastings to accept or reject the proposal

Note that although this requires a gradient evaluation, the gradient is with respect to x and
so Θ does not play a role.

10.2.6 EBM Learning with MCMC

Problem: (MLE) is very difficult to compute, since the computation of the logZ(Θ) terms requires a high
dimensional integral

max
Θ

ℓ̂(Θ) :=
1

n

n∑
i=1

fΘ(xi)− logZ(Θ) (MLE)

but to perform first order optimization of (MLE), we require only the gradient

∂ℓ̂(Θ)

∂Θ
=

1

n

n∑
i=1

∂

∂Θ
fΘ(xi)−

∂

∂Θ
logZ(Θ) (10.19)
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the terms ∂
∂ΘfΘ(xi) are readily determined from back-propagation of fΘ. The trouble is in approximating

the second gradient term ∂
∂Θ logZ(Θ), which we may expand as follows

∂

∂Θ
logZ(Θ) =

∂

∂Θ
log

∫
exp fΘ(x)dx Expansion of (PF) (10.20)

=

(∫
exp fΘ(x)dx

)−1
∂

∂Θ

∫
exp fΘ(x)dx Chain Rule (10.21)

=

(∫
exp fΘ(x)dx

)−1 ∫
∂

∂Θ
exp fΘ(x)dx Leibniz Integral Rule (10.22)

=

(∫
exp fΘ(x)dx

)−1 ∫
exp fΘ(x)

∂

∂Θ
fΘ(x)dx Chain Rule (10.23)

=

∫ (∫
exp fΘ(x)dx

)−1

exp fΘ(x)
∂

∂Θ
fΘ(x)dx Linearity (10.24)

=

∫
P[x]

∂

∂Θ
fΘ(x)dx Definition of (EBM) (10.25)

= EP[x]

[
∂

∂Θ
fΘ(x)

]
Definition of Expectation (10.26)

Which is still a difficult to compute integral. However, this integral given in (10.26) admits readily a sample
average approximation

EP[x]

[
∂

∂Θ
fΘ(x)

]
≈ 1

m

m∑
i=1

∂

∂Θ
f(xi), xi ∼ P. (10.27)

having terms which are readily determined from back-propagation. Thus, as long as we can draw random
samples from the model, we have access to an unbiased Monte Carlo estimate of the log-likelihood gradient,
which allows us to optimize the parameters with stochastic gradients.

Running MCMC until convergence to obtain samples can be computationally expensive. To make MCMC-
based learning of EBMs practical, we need to make some approximations. One popular method is Contrastive
Divergence, where the MCMC chain is initialized from some data point, and only a fixed number of MCMC
steps are performed — typically fewer than what would be required for full convergence.

Note that in exponential family case, we do note need to perform these steps — it is sufficient to calculate
the sufficient statistics themselves to fully characterize the distribution.

10.2.7 Another way to learn EBM — Score Matching

As discussed in Section 10.2.6, sampling is one approach to handle the partition function in EBMs. However,
is there a way to avoid dealing with the partition function directly?

Maximum Likelihood Estimation (MLE) works well when the partition function can be easily computed, such
as in logistic regression where there are only two possible outcomes. But when the integral involved is difficult
to compute, MCMC is often required—though its performance can be suboptimal due to computational cost.

This motivates the search for MLE-free approaches to learn model parameters. There are several representative
algorithms, one of which is Score Matching, and another is Noise Contrastive Estimation (NCE), which we
shall discuss in the representation learning section.
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10.2.7.1 MLE as KL-Divergence

Consider the empirical distribution given by

P̂[x] =
1

n

n∑
i=1

δ[xi] (ED)

we note that then the liklihood estimation problem given in (MLE) be equivalently expressed as

min
Θ

KL(P̂∥PΘ) = min
Θ

[∫
P̂[x] log

P̂[x]
PΘ[x]

dx

]
(10.28)

= min
Θ

[∫
P̂[x] log P̂[x]dx−

∫
P̂[x] logPΘ[x]dx

]
(10.29)

Note that the
∫
P̂[x] log P̂[x]dx component is not a function of Θ and so plays no part in the optimization.

At which point we arrive at

min
Θ

KL(P̂∥PΘ) = max
Θ

∫
P̂[x] logPΘ[x]dx (10.30)

Note that this still involves a high dimensional integral involving the partition function, as it is essentially
a reformulation of MLE. However, if you can find another divergence that does not involve the partition
function, then you can avoid this issue.

Indeed, there is such a divergence — the Fisher Divergence.

DF (P̂∥PΘ) :=EP̂

[
1

2
∥∇x log P̂[x]−∇x logPΘ[x]∥22

]
=
1

2

∫
P̂[x]∥∇x log P̂[x]−∇x logPΘ[x]∥22dx

(FD)

the score matching estimator

Θ̂ = argmin
Θ

DF (Θ) (SME)

However, this may seem to be difficult to solve, because we have no estimator to the score function (gradient)

to the empirical distribution P̂. We may tackle (FD) as follows

DF (P̂∥PΘ) :=
1

2

∫
P̂[x]∥∇x log P̂[x]−∇x logPΘ[x]∥22dx (10.31)

=

∫
P̂[x]

1

2
∥∇x log P̂[x]∥22︸ ︷︷ ︸

(A)

+
1

2
∥∇x logPΘ[x]∥22︸ ︷︷ ︸

(B)

−⟨∇x log P̂[x],∇x logPΘ[x]⟩︸ ︷︷ ︸
(C)

 dx (10.32)

In the program (SME), (A) is not a function of Θ and so plays no part in the optimization, (B) is easy to
approximate by sampling. (C) is only the problematic term, so consider∫

−P̂[x]⟨∇x log P̂[x],∇x logPΘ[x]⟩dx (C)

To tackle the integral in (C), we recall the following integration by parts formula∫ b

a

u(x)v′(x)dx = [u(x)v(x)]

∣∣∣∣∣
b

a

−
∫ b

a

u′(x)v(x)dxu = u(b)v(b)− u(a)v(a)−
∫ b

a

u′(x)v(x)dxu (IP)
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Under mild regularity conditions, and the multivariate generalization of (IP), allow u(x) = ∇x logPΘ[x] and

v′ = ∇x log P̂[x], then (C) becomes

− lim
b→∞

∇b logPΘ[b]P̂[b]︸ ︷︷ ︸
=0

+ lim
a→−∞

∇a logPΘ[a]P̂[a]︸ ︷︷ ︸
=0

+

∫ ∞

∞
∇2

xPΘP̂[x]dx (10.33)

It follows that

DF (P̂∥PΘ) ∝ L(Θ) := EP̂

[
Tr

[
∇2

x logPΘ[x]
]
+

1

2
∥∇x logPΘ[x]∥22

]
(SML)

If P̂ is given by the form in (ED), (SML) may be approximated as

L(Θ) ≈ 1

n

n∑
i=1

Tr
[
∇2

x logPΘ[xi]
]
+

1

2
∥∇x logPΘ[xi]∥22 (10.34)

In this way, you avoid the partition function, at the cost requiring second order hessian information
∇2

x logPΘ[x], which is not very memory efficient and expensive to compute. Thus the implicit score matching
formulation given in (SML) is only applied to relatively simple energy functions, where the hessian is tractable.
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