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11.1 Recap

In the previous class, we learned about energy-based models and applying score matching and contrastive
divergence (Fischer) in an attempt to reduce the learning and evaluation complexity.

p(x) =
exp fθ(x)

z(θ)

optimization−−−−−−−−→
duality

Max Entropy Model

Learning → Minimize Divergence

{
K.L → M.L.E. → C.D.

Fischer → Score Matching

We further explored different sampling techniques such as Gibbs, Langevin, and Metropolis-Hastings (xt+1

sampled from p(·|xt)), and understood how sampling is analogous to generation.

11.2 New Content

11.2.1 Generation/ Sampling

We can start sampling using a Langevin Dynamic Sampler. The first step is to sample from an initial data
distribution.Next, we start an iterative process for different time steps to generate a sample and accept it
using Metropolis-Hastings.

x0 ∼ p0(x)

for t = 1, ...

y ∼ p(·|xt)

y = xt + η∇xt log pθ(xt) +
√
ηϵ

u ∈ U [0, 1]

xt+1 = y if u ≤ A(x, y) = min(1, p(y)p(x|y)
p(x)p(y|x) )

Let us consider the score of of pθ(x) as follows:

∇x log pθ(x) = ∇xfθ(x) (11.1)
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11.2.2 Score Matching

Recall the score-matching expression and substitute the score function∫
p̂(x)||∇xfθ(x)−∇x log p̂(x)||2dx (11.2)

Here, sw(x) = ∇xfθ(x) : Rd → Rd. We can expand out the expression for score by writing:

∫
p̂(x)(sw(x))

2dx+

∫
p̂(x)(∇x log p̂(x))

2dx− 2

∫
p̂(x)sw(x)∇x log p̂(x)dx

The second integral term is constant with respect to the optimization and therefore the expression reduces
to:

Ex[sw(x)
2 + 2∇xsw(x)]

11.2.3 Why score matching fails

1. Difficult to learn the gradient in the sw(x) = ∇xfθ(x) : Rd → Rd dimension

2. The Langevin dynamics need to go to infinite steps to accurately sample

11.2.4 Diffusion Model Design

In the above intractable expression, it gets challenging to estimate the gradient of a second order equation.
This in turn leads to the generation process being expensive. Hence, let us try conditioning the energy-based
model with noise and utilise a perturbed distribution.

pθ(x) =
exp fθ(x)

Z(θ)
(11.3)

p(x′|x) = N(x
√
1− β, βI) (11.4)

x′ =
√
1− βx+

√
βϵ, ϵ ∼ N(0, 1) (11.5)

pβ(x
′) =

∫
pθ(x)pβ(x

′|x)dx, β → 0 (11.6)

For sampling each data point and obtaining a sequence of data points {x0, x1, . . . , xN}, relation (11.4)
(discrete Markov chain model) is used. Equation 11.5 is the relation between consecutive data points.

∇x′ log pβ(x
′) =

∇x′
∫
pθ(x)pβ(x

′|x)dx
pβ(x′)

(11.7)

=

∫
pθ(x)∇x′pβ(x

′|x)dx
pβ(x′)

(11.8)

=

∫
p(x|x′)∇x′ log pβ(x

′|x)dx (11.9)

= Ex|x′ [∇x′ log pβ(x
′|x)] (11.10)

= Ex|x′

[
∇x′

(
−||x′ −

√
1− βx||2

2β

)]
(11.11)
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Equation (11.9) is obtained by considering the joint probability of x′ and (11.11) is derived after substituting
(11.4).

x′ + β∇x′ log pβ(x
′) = Ex|x′ [

√
1− βx] (11.12)

x′ + β ∇x′ log pβ(x
′)︸ ︷︷ ︸

parametrized as Sw(x′,β)

=
√
1− βEx|x′ [x] (11.13)

(11.14)

11.2.5 Parametrization

Now, the objective function to optimize the score function (minimize w) is defined as follows:

min
w

EβEx|x′ [||x′ + βSw(x, β)−
√
1− β Ex|x′ [x] ||2] (11.15)

min
w

EβEx|x′

[
||x′ + βSw(x

′, β)−
√
1− βx||2

]
(11.16)

The optimal model sw(x, β) (w is parameters) is the one to minimize expression (11.15), so we will find it
by considering expression (11.16) by showing the equivalence below:

Let b =
√
1− βEx|x′ [x].

EβEx|x′

[
||x′ + βSw(x

′, β)−
√

1− βx||2
]

(11.17)

= EβEx|x′

[
||x′ + βSw(x

′, β)− b+ b−
√
1− βx||2

]
(11.18)

= EβEx|x′
[
||x′ + βSw(x

′, β)− b||2
]
+ EβEx|x′

[
||b−

√
1− βx||2

]
(11.19)

+ 2EβEx|x′ [(x′ + βSw(x
′, β)− b)]EβEx|x′

[
(b−

√
1− βx)

]
(11.20)

We can show that the cross term goes to 0 by the Tower property:

EβEx|x′ [(x′ + βSw(x
′, β)⊤(b−

√
1− βx)]

= EβEx|x′ [(x′ + βSw(x
′, β)⊤(b−

√
1− βEx|x′ [x])]

= EβEx|x′ [(x′ + βSw(x
′, β)⊤0]

= 0.

(11.21)

The above expression gives an insight into how the diffusion process is related to the energy-based model by
introducing a noise perturbed distribution.


