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12.1 Recap

Energy Based Models Recall energy based models have the form:

Pθ(x) =
exp(fθ(x))

Z(θ)
, Zθ =

∫
exp(fθ(x))dx

For sampling from this distribution, we could use:

xt+1 ← xt + ηt∇xt
logPθ(xt) +

√
2ηtϵ

Note that for generation, just knowing the log probability is enough, this leads to the following two ap-
proaches:

1. Parameterize the log probability directly, and learn it. This leads to score matching.

2. Perturb the original distribution and estimate the gradient. This leads to diffusion models.

Note: although both methods throw away the energy and estimate the gradient instead, the original form of
energy based models is still useful and practical. Later, the professor will show how to connect EBM with
representation learning.

12.2 New Content

Today’s topic is to talk about latent variational auto-encoders and how it connects with diffusion models.

12.2.1 Latent Variable Model

An example latent variable model has the following form: x0 ∼ P0(x) is the distribution we are interested in.
And say we are given the following transitions xt|xt−1 ∼ N (xt+1 + ηtSθ(xt−1), σ

2I) =: P (xt|xt−1). There’s

a trajectory and we can multiply the Markov chain to obtain P ({xi}Ti=0) =
∏T

i=1 P (xi|xi−1)P (x0). Note we
can only observe xT , and all the intermediate t < T we cannot observe. Thus we can only match xT . Note
we have
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Pθ(xT ) =

∫
P (xT , (x0, . . . , xT−1)d{x}T−1

0

And using some distance measure D(P̂ (xT )||P (xT )), matching this allows us to learn the Sθ(·).

Next, let’s look at some examples of latent variable models. Each of the following has a latent variable z
and we can observe x which depends on z only. An graphical illustration is the following:

xz

12.2.2 Example I: Gaussian Mixture Model

In Gaussian Mixture Model (GMM), the latent variable z comes from a categorical distribution: z ∼
Cat({pi}ki ). If we use one hot representation z ∈ 0, 1k. The conditional distribution x|z ∼ N (cz, σ

2I).
C ∈ Rp×k is a matrix recording the centers of the Gaussian, and cz ∈ Rp×1 is a specific center. To fit a
GMM, we usually use the expectation maximization method (EM).

12.2.3 Example II: Variational Autoencoder

In variational autoencoder (VAE), specifically Gaussian VAE, the latent variable z ∼ N (0, σ2I). The

conditional distribution p(x|z) ∝ exp(− ||fθ(z)−x||2
2σ2 ).

12.2.4 Example III: Vector Quantized Variational Autoencoder

In vector quantized variational autoencoder (VQ-VAE), the latent variable z ∼ Multi({pi}ki=1). The condi-

tional distribution p(x|z) ∝ exp(− ||fθ(z)−x||2
2σ2 ). VQ-VAEs are often used as image tokenizers.

12.2.5 Training VAEs

Next we will derive a method to train VAEs. Recall that in a VAE we have observed variable x that depends
on the latent variable z.

xz

p(x) =

∫
p(x|z)p(z)dx

We only have observed data x: D = {xi}ni=1. Let’s perform MLE:

KL(p̂(x)||p(x)) ∝ 1

n

n∑
i=1

log

∫
pθ(xi|z)p(z)dz =: L(θ)
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In the first try we can directly calculate the gradient with respect to θ. The following derivation focuses on
just one data-sample. The same idea applies when we have a dataset.

∇θL(θ) =

∫
∇θpθ(xi|z)p(z)dz∫
pθ(xi|z)p(z)dz

(integration is linear so we can pull in the gradient operator)

=

∫
pθ(xi|z)∇θ log pθ(xi|z)p(z)dz∫

pθ(xi|z)p(z)dz
(log trick)

=
Ep(z)[p(x|z)∇θ log pθ(x|z)]

Ep(z)[pθ(x|z)]

This estimation is not very good because of the high variance induced by taking the division between MC
estimations (the variance multiplies). Even though the two estimates are unbiased estimators, the division
result is not.

Another Approach

The maximum likelihood estimation (MLE) can be expressed as:

MLE: log

∫
pθ(x|z)p(z)dz = log

∫
qλ(z|x)pθ(x|z)p(z)

qλ(z|x)
dz

Using Jensen’s Inequality:

= logEqλ(z|x)

[
pθ(x|z)p(z)
qλ(z|x)

]
≥ Eqλ(z|x)

[
log

pθ(x|z)p(z)
qλ(z|x)

]
To make the values match as closely as possible, we can try to choose qλ(z|x) that maximizes the above
expression:

max
qλ(z|x)

∫
qλ(z|x)

[
log pθ(x|z) + log

p(z)

qλ(z|x)

]
Thus the original MLE objective after the introduction of the qλ(z|x) becomes:

max
θ

log

∫
pθ(x|z)p(z)dz = max

θ
max

qλ(z|x)
Eqλ(z|x)

[
log pθ(x|z) + log

p(z)

qλ(z|x)

]
After fixing a qλ(z|x) we can then maximize with respect to θ. With q(z|x) determined the gradient w.r.t.
θ becomes:

∇θΩ(θ) = Eqλ(z|x) [∇θ log pθ(x|z)]

EM Algorithm

1. Update λ to update qλ(z|x) (E-step). 2. Update θ to update θ (M-step).

How to Get ∇λΩ(λ)

If qλ(z|x) is Gaussian, we have a straightforward solution. In general, we need gradient updates to obtain
qλ. The equation becomes:

Ω(λ) = Eqλ(z|x) [log pθ(x|z)] + Eqλ(z|x)

[
p(z)

qλ(z|x)

]
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The gradient ∇λ is given by:

∇λΩ(λ) = ∇λEqλ(z|x) [log pθ(x|z)] +∇λEqλ(z|x)

[
log

p(z)

qλ(z|x)

]
First, we focus on the first component using the log trick:

∇λEpθ(z|x) [log pθ(x|z)] = ∇λ

∫
log pθ(x|z)qλ(z|x) =∫

log pθ(x|z)∇λ log qλ(z|x)qλ(z|x) = Eqλ(z|x) [∇λ log qλ(z|x) log pθ(x|z)]

Note again the variance of this term is large because it is the product of two terms. Next we focus on the
second term:

∇λ

∫
qλ(z|x) log

p(z)

qλ(z|x)
dz

=

∫
∇λ(qλ(z|x)) log

p(z)

qλ(z|x)
dz +

∫
qλ(z|x)∇λ(

p(z)

qλ(z|x)
)dz (product rule)

=

∫
qλ(z|x)∇λ(log qλ(z|x)) log

p(z)

qλ(z|x)
dz +

∫
qλ(z|x) · −∇λ(qλ(z|x))dz

(log trick on the first term, property of log in the second term)

=Eqλ(z|x)

[
∇λ(log qλ(z|x)) log

p(z)

qλ(z|x)

]
−
∫
∇λqλ(z|x)dz (log trick on the second term)

=Eqλ(z|x)

[
∇λ(log qλ(z|x)) log

p(z)

qλ(z|x)

]
−∇λ

∫
qλ(z|x)dz (move gradient op outside of integration)

=Eqλ(z|x)

[
∇λ(log qλ(z|x)) log

p(z)

qλ(z|x)

]
− 0

(gradient of constant–marginal distribution integrates to 1–is 0)

Combining the two parts together we obtain:

∇λΩ(λ) = Eqλ(z|x) [∇λ log qλ(z|x) log pθ(x|z)] + Eqλ(z|x)

[
∇λ(log qλ(z|x)) log

p(z)

qλ(z|x)

]
= Eqλ(z|x)

[
∇λ(log qλ(z|x)) log

pθ(x|z)p(z)
qλ(z|x)

dz

]
This generic derivation works on any q, using this gradient we can update λ and maximize the objective.
However the log of the ratio is unstable and prevents good estimate of the gradient.

Another Approach

If qλ(z|x) is Gaussian:

qλ(z|x) = N (hλ(x), σ
2I), z = hλ(x) + ϵ · σ, ϵ ∼ N (0, I)

We can apply the reparameterization trick:

Ω(λ) = Eqλ(z|x) [log pθ(x|z) + log p(z)]− Eqλ(z|x) [log qλ(z|x)]
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This simplifies to:

Ez [log pθ(x|hλ(x) + σϵ) + log p(hλ(x) + σϵ)]− Ez [log qλ(hλ(x) + σϵ|x)]

The gradient w.r.t. λ is:

∇λΩ(λ) = Ez [∇λ log pθ(x|hλ(x) + σϵ) +∇λ log p(hλ(x) + σϵ)]− Ez [∇λ log qλ(hλ(x) + σϵ|x)]

Note in this method, the ratio is gone and we can obtain are fairly good estimate. However, this method
has some drawbacks because it must be in the Gaussian form. It may not be applicable in discrete cases.

In the next lecture, we are going to see how to apply VAE to derive diffusion models.


