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13.1 Recap

• Latent Variable Models: p(x) =
∫
p(x, z) dz =

∫
p(x|z)p(z) dz

• This integral is intractable, therefore we introduce a more tractable distribution q(z) to replace p(x|z).

• To better calculate p(x), we introduce Evidence Lower Bound (ELBO), which derives a lower bound
on log p(xi) using variational inference.

• log p(xi) = Eqi(z)

[
log p(xi,z)

qi(z)

]
+KL(qi(z) ∥ p(z|xi))

KL divergence part is also referred to as H(q).

• Therefore, we have the inequality: log p(xi) ≥ Eqi(z)

[
log p(xi,z)

qi(z)

]

13.2 New Content

Given that xT follows a Gaussian distribution N (0, I), the update equation for xt−1 is given by:

xt−1 = xt + ηt∇f(xt) +
√
2ηtϵt, (13.1)

where ϵt ∼ N(0, I) represents the standard normal noise.

We define the following components:

Sθ(xt, t) = ηt∇f(xt), (deterministic part) (13.2)

Σθ(xt, t) =
√

2ηt, (stochastic part) (13.3)

Thus, the conditional probability distribution for xt−1 given xt can be written as:

p(xt−1|xt) = N (Sθ(xt, t),Σθ(xt, t)). (13.4)

Finally, the joint probability distribution for the sequence x0, x1, . . . xT is:

p(x0, x1, . . . xT ) =

T∏
t=1

p(xt|xt−1)p(xT ). (13.5)
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Next, we have the marginal distribution p(x0), which is obtained by integrating over the joint probability
p(x0, . . . , xT ) with respect to all intermediate variables x1, . . . , xT . This can be expressed as:

p(x0) =

∫
p(x0, x1, . . . , xT ) dx1 . . . dxT . (13.6)

The log-probability log p(x0) can be written as the logarithm of the integral over the joint probability and
we now introduce a component q(x1, . . . , xT |x0), which we divide and multiply inside the integral. The
expression for log p(x0) becomes:

log p(x0) = log

∫
p(x0, x1, . . . , xT )dx0dx1 . . . dxT (13.7)

= log

∫
p(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)
q(x1, . . . , xT |x0)dx0dx1 . . . dxT (13.8)

≥ Eq

[
log

p(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)

]
(13.9)

≥ Eq

[
log

T∏
i=1

p(xt−1|xt)p(xT )

]
+H(q) (13.10)

To optimize the ELBO, we aim to maximize the following objective:

max
θ

max
q

Eq

[
log

T∏
i=1

p(xt−1|xt)p(xT )

]
+H(q) (13.11)

⇒max
q

max
θ

Eq

[
log

T∏
i=1

p(xt−1|xt)p(xT )

]
+H(q) (13.12)

⇒max
θ

Eq

[
log

T∏
i=1

p(xt−1|xt)p(xT )

]
+H(q) (13.13)

Since q depends on θ, we we can change the order of optimization, effectively treating q as arbitrary and
leaving the task of optimization to θ.

When introducing q and selecting which q to use, it’s important to consider the limitations of the current
ELBO equation:

• q is high-dimensional, with T steps, making it computationally expensive to sample the entire trajec-
tory. (using close-form q)

• The current choice of q is complex and performs poorly. (reducing variance in ELBO)

We define q(xT , . . . x1|x0) =
∏T

i=1 q(xt|xt−1), where each q(xt|xt−1) is modeled as a Gaussian distribution

N (
√
1− βt−1xt−1, βt−1I). This formulation is equivalent to the forward process of adding Gaussian noise

in a diffusion model.

Fact 1 (Gaussian Forward Process): Since every timestep follows Gaussian distribution, we have

q(xt|x0) = N (

t∏
i=1

√
1− βtx0, (1− αt)I) (13.14)
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where αi = 1− βi and αt =
∏t

i=1 αi.

We could deduce a close form for q(xt−1|xt, x0) from (13.14), which is

q(xt−1|xt, x0) =
q(xt, xt−1|x0)

q(xt|x0)
(13.15)

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
(13.16)

∝ exp

[
−1

2
(
1

βt
||xt −

√
1− βt−1xt−1||2+

1

1− αt
||xt−1 − αt−1x0||2−

1

ᾱt
||xt −

√
ᾱtx0||2)

]
.

(13.17)

Fact 2 (Close-form q): From 13.17, we have

q(xt−1|xt, x0) = N (µ(xt, x0), β̃t) (13.18)

µ(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0 (13.19)

β̃t =
1− ᾱt−1

1− ᾱt
βt (13.20)

We will now show how Fact 2 helps reduce variance in the ELBO. Starting from (13.10), we have

Eq

[
log

T∏
i=1

p(xt−1|xt)p(xT )− log q(x1, . . . , xT |x0)

]
(13.21)

=Eq

[
log p(xT ) +

T∑
i=1

log
p(xt−1|xt)

q(xt|xt−1)

]
(13.22)

=Eq

[
log p(xT ) +

T∑
i=1

log
p(xt−1|xt)

q(xt−1|xt, x0)

q(xt−1|x0)

q(xt|x0)

]
(13.23)

=Eq

[
log p(xT ) +

T∑
i=1

log
p(xt−1|xt)

q(xt−1|xt, x0)
+

T∑
i=1

log
q(xt−1|x0)

q(xt|x0)

]
(13.24)

=Eq

[
log p(xT ) +

T∑
i=1

log
p(xt−1|xt)

q(xt−1|xt, x0)
+ log

q(xT |x0)

q(x1|x0)

]
(13.25)

=Eq [log p(xT )]−DKL [q(xt−1|xt, x0)||pθ(xt−1|xt)]−DKL [q(x1|x0)||q(xT |x0)] . (13.26)

Therefore, we get the reduced version as matching N (Sθ(xt, t),Σθ(xt, t)) to N (µ(xt, x0), β̃tI), which is equiv-
alent to matching score with noise in diffusion model.

Our goal is to maximize the ELBO with respect to θ, and only the second term is relevant to θ. Therefore,
we must focus on accurately parameterizing pθ and optimizing θ to minimize this divergence.


