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14.1 Recap

In a previous lecture, we talked about energy-based models. We can denote the probability density function
as

p(x) =
exp(f(x))

Z(f)

where f(x) is the energy function and Z(f) is the partition function that ensures p(x) sums to 1 over all
possible values of x:

z(f) =

∫
exp(f(x))dx

We can build connections from EBMs to diffusion models. This connection is particularly relevant when
considering continuous parameterization. There’s an important relationship between sampling/generation
processes and diffusion models, which involves the gradient of the energy function with respect to x: ∇xf(x).

For discrete cases, Gibbs sampling becomes a relevant technique, which we’ll explore in more detail in this
lecture.
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14.2 New Content

14.2.1 Gibbs Sampling

Gibbs sampling is extremely helpful when it comes to understanding the joint distribution across several
random variables by iterative sampling conditional distributions of each variable given all other variable
conditions.

Algorithm 1 Gibbs Sampling algorithm

x0 ∼ p0(x)
for t = 1 . . . do
for i = 1 . . . L do
xi ∼ p(xi|x−i)

end for
end for

Let us denote x = {xi}Li=1 where xi ∈ R1×k is a one-hot vector, filled with 0s and 1s. We use the standard
notation x−i = (x1, . . . , xi−1, xi+1, . . . xk), where x−i is every value in the vector other than xi.

From this algorithm, we can say:

p(xi|x−i) ∝ exp(f(xi, x−i))

=
exp(f(xi, x−i))∑

y∈X

exp(f(y, x−i))

In this context, f represents the energy function of our model. It’s an arbitrary function that parameterizes
the probability distribution we’re working with. This tells us how likely it is to sample xi given the other
fixed variables conditions.

And we see that the probability of sampling xi ends up being proportional to our energy function. We divide
by

∑
y∈X

exp(f(y, x−i)) in order to normalize our energy function values.

Note that this algorithm is equivalent to softmax(f(xi, x−i)). Thus, the sampling algorithm is setting each
xi to softmax(f(xi, x−i)).

Gibbs sampling can be computationally intensive. An approximation that is easier to calculate is:

p(xi|x−i) ≈ p(xi|x<i)

Here, we only take variables we have already generated.



Lecture 14: Autoregressive Model 14-3

14.2.2 Restricted Boltzmann Machine

Restricted Boltzmann machines are probability distributions for binary data with many tunable parameters.
Boltzmann machines are in the same family as entropy models. They consist of a visible layer which consists
of the input data and a hidden layer which captures patterns from the input data. The connection between
these two layers have weights that depict how the hidden and visible layer units interact and connect with
each other. And so, the Restricted Boltzman machine is helpful when it comes to understanding underlying
patterns within data.

Here, h ∈ {0, 1}p. This graph is restricted because we only have quadratic terms between h and x. There is
no dependency among x’s or h’s. We can denote the potential function as:

p(x, h) ∝ exp(hTWx)

where h ∈ R1×p,W ∈ Rp×(L×k) and x ∈ R(L×k)×1

The probability of a certain x and h configuration is proportional to the exponential of hTWx (the interaction
between the two in relation to W).

Now, let us talk about some properties of the model.

p(h1|x) =
exp(hTWx)∑
h

exp(hTWx)

We divide by
∑
h

exp(hTWx) here to normalize the values for the probability to ensure it lies between 0 and

1.

Let us take a look at the term hTWx. We can denote this as:

hTWx = hT y

where y = Wx ∈ Rp×1. We can rewrite the term:

hTWx = hT y =

p∑
i=1

hiyi
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Substituting this term into our equation for p, we get:

p(hi = 1|x) ∝ exp(hiyi)

=
exp(hiyi)

1 + exp(yi)

Note that since h ∈ {0, 1}p, the term exp(hiyi) basically gives us a binary distribution used to calculate how
likely that the hidden unit hi will be on or off. Additionally, this equation is a sigmoid function.

To further understand the RBM, we can consider the relationship between the visible units x and the hidden
units h. By substituting µ = hTW into hTW , we get tr(µx) = µTxi. This leads to an important result
µ = hTW into hTWx so tr(µx) = µTxi and then we get

p(xi|h) = softmax(µixi)

This relationship shows how the hidden units influence the probability of the visible units, which is crucial
for understanding the generative process in RBMs.
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14.2.3 Block-wise Gibbs Sampling

The Block-wise Gibbs sampling algorithm is a variation of Gibbs sampling explained above that instead
variables are updated in block segments instead of being considered one at a time. This approach is generally
more efficient as a result.

Algorithm 2 Block-wise Gibbs Sampling algorithm

x0 ∼ p0(x)
for t = 1 . . . T do

{hi}pi=1 ∼
p∏

i=1

p(hi = 1|x)

{xi}Li=1 ∼
L∏

i=1

p(xi|h)

end for

As shown above, in Block-wise Gibbs Sampling, you first calculate the probability of each hidden unit being
on based on current visible layer units values and then update all hidden units from these calculation as a
block at once. And then do the same for the visible units but based on the newly calculated hidden values.

How can we change this produced to an auto-regressive model?

In this algorithm, ζ denotes a sigmoid function that outputs a vector with dimension Rp×1.

Algorithm 3 Auto-regressive model construction

h̃← ζ(WTx)
x = softmax(hTWx)
for t = 1 . . . L do

{hi}pi=1 ∼
p∏

i=1

p(hi = 1|x)

{xi}Li=1 ∼
L∏

i=1

p(xi|h)

end for

This modified algorithm for auto-regressive model construction will be based on p(xi, x<i) = softmax(σ(WTx<i)
TWxi))

where h = σ(WTx<i).

As for, a key difference between the two is that while Gibbs sampling doesn’t care about order in which
variables are sampled, the equation for p(xT (i), xπ(<i)) does. Here, π denotes the permutation that determins
the order of the variables. This ordering is crucial for the autoregressive nature of the model, as each
variable depends on all previous variables in the sequence. This distinction between Gibbs sampling and the
autoregressive approach is important for understanding the model’s behavior.


