
CSE6243: Advanced Machine Learning Fall 2024

Lecture 15: Generative Adversarial Networks
Lecturer: Bo Dai Scribes: Adithya Vasudev, Abdulaziz Memesh

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

15.1 Recap

15.1.1 Energy Based Models

Over the past few weeks, we’ve been discussing generative models from the lens of an energy-based model,
that is, those parameterized in the form:

pf (x) =
exp(f(x))

z(f)

We then discussed contrastive divergence in energy-based models as an approximation of their MLE ob-
jective, score matching, and the trade-off between sampling and generation. We also dove into Langevin
Dynamics, and their connection to various generative models, such as Diffusion, Latent Space Models, and
Autoregressive Models.

15.1.2 Score Matching Review

As a refresher, score matching originates from the Langevin Dynamics sampler. Recall that in Langevin
Dynamics:

xt+1 = η∇xt
log(p(xt)) +

√
ηϵ

Consider the first-order term, more specifically, let a score function Sw(x) be defined as:

Sw(x) = ∇xf(x)

The goal is to compute the quality of this score, which is done via the KL-divergence of this score function
with respect to the first-order term. We naturally want this difference minimized This is done by evaluating
the following integral:

∫
pλ(x) ∥Sw(x)−∇x log pλ(x)∥2 dx

This integral is intractable, but if we expand the norm term out, as such:

=

∫
pλ(x)S

⊤
w (x)Sw(x)dx+

∫
pλ(x) (∇x log pλ(x))

2
dx− 2

∫
pλ(x)Sw(x)∇x log pλ(x)dx

15-1



15-2 Lecture 15: Generative Adversarial Networks

We can see that the first term simplifies to: Ep̂λ
[S2(w)] and the second term has none of the variables we

are trying to optimize, making them effectively a constant and can be safely ignored (constant terms reduce
to 0 when we take the first derivative).

Thus, the only problematic term is that third and final term. We can do some algebraic manipulation on
this term, as such, to see of it reduces to or is bounded by a simpler term we can integrate:

= −2

∫
pλ(x)Sw(x)

1

pλ(x)
∇pλ(x)dx

= −2

∫
Sw(x)∇pλ(x)dx

Apply integration by parts:

= −2[Sw(x)pλ(x)]− 2

∫
pλ(x)∇Sw(x)dx

That second term in this expression is the expectation of ∇Sw(x), which is our Langevin Term!

15.2 New Content

15.2.1 Generative Adversarial Networks

By their motivation, the Generative Adversarial Network, or GAN, is not inherently related to energy-
based models, at least, not at their inception. Their goal was to solve the following minimax problem.

Define a distribution p that we are trying to learn, and let this learned distribution be q. Thus, if x ∼ p,
then let the target y = 1, and if x ∼ q, then y = −1.

Define a function Dϕ(x), called the discriminator, who’s goal is to learn whether a value x was drawn from
p or q. This is a binary classification problem, and the goal is to learn the function Dϕ(x) that maximizes
the score on this binary classification task.

This can be mathematically expressed as:

max
Dϕ

Ep̂(log(Dϕ(x)) + Eq(log(1−Dϕ(x))

The goal of a GAN is to then tune the distribution q, via a model called the generator, such that the
discriminator can no longer tell the difference between that

min
q

max
Dϕ

Ep̂(log(Dϕ(x)) + Eq(log(1−Dϕ(x))

Here, q is the target distribution, p is the distribution we can sample from, and Dϕ(x) is a function pro-
viding the probability that a given sample is from the sample distribution, representing a model called the
discriminator.

We can use the reparametrization trick from variational autoencoder models to aid in taking the gradient of
this learning objective:

z ∼ q(x)



Lecture 15: Generative Adversarial Networks 15-3

ϵ ∼ N(0, z)

x ∼ g(ϵ)

This yields a new expectation term of:

Eϵ(log(1−Dϕ(x)(x)

which is much easier to differentiate.

15.2.2 Training a GAN

The training loop for a GAN is as follows:

1. Fix g, draw sample x̂ ∼ g(ϵ) Apply logistic regression to find Dϕ

2. Fix D∗
ϕ and determine: ming Eq [log(1−Dϕ(g(ϵ)))], where g is the generator.

15.2.3 Proof of Correctness

Does this actually work?

15.2.3.1 What is the optimal discriminator?

L(Dϕ) = Ep[logDϕ(x)] + Eq[log(1−Dϕ(x))]

∂L

∂Dϕ
= p̂(x) · 1

Dϕ(x)
+ q(x) · −1

1−Dϕ(x)

Set gradient to 0:

p̂(x)− p̂(x)D∗
ϕ(x) = q(x)D∗

ϕ(x)

D∗
ϕ(x) =

p̂(x)

p̂(x) + q(x)

Thus, an optimum exists with a given q!

One big question one may ask is if this optimum is a global optimum. While showing this is a little complex,
it effectively is convex, unless your generator and discriminator are neural networks.

With the optimal discriminator determined, we turn to the generator.



15-4 Lecture 15: Generative Adversarial Networks

15.2.3.2 Solve for optimal generator

Ep

[
logD∗

ϕ(x)
]
+ Eq

[
log(1−D∗

ϕ(x))
]

Here, we substitute the discriminator function we solved for earlier:

= Ep

[
log

(
p̂(x)

p̂(x) + q(x)

)]
+ Eq

[
log

(
q(x)

p̂(x) + q(x)

)]
The above is just our generator loss function! With a little observation, the two terms actually resemble a
KL-divergence term, as such:

= KL (p̂∥p̂+ q) +KL (q∥p̂+ q)

This term reaches an optimum at = q, which intuitively makes sense as the ideal GAN generator, since this
is where the generator is producing samples that exactly match the ground truth.

(Note: The final term is known as the Jensen-Shannon Divergence)

15.2.4 How does this connect to EBM?

Consinder the optimization objective for a generalized GAN:

min
q

max
f

J(q, f)

And that of the Energy-Based Model

max
f

Ep[log p(x)]

Rearranging some terms for the EBM objective function yields:

= max
f

Ep[f(x)]− Êp[logZ(f)]

By definition:

Z(f) =

∫
exp(f(x))dx

This means that the second term reduces to logZ(f). Making this substitution yields:

= max
f

Ep[f(x)]− logZ(f)

= log

∫
exp(f(x))

q(x)
q(x)dx

= max
q

∫
q(x) log

exp(f(x))

q(x)
dx



Lecture 15: Generative Adversarial Networks 15-5

= max
q

∫
q(x) [f(x)− log q(x)] dx

= max
q

Eq[f(x)] +H(q)

= max
f

Ep[f(x)]−
(
max

q
Eq[f(x)] +H(q)

)

= max
f

min
q

Ep[f(x)]− Eq[f(x)]−H(q)

This is the objective function for a GAN (plus one additional entropy term, called the entropy regularization
term).


