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1.1 Recap on Energy-Based Model (EBM)

Energy-Based Models (EBMs) are a type of probabilistic model where the probability distribution of data
is defined in terms of an energy function. They are often used in machine learning to model complex
dependencies in structured data. The energy-based function can be defined as follows:

p(x) =
exp(f(x))

Z(f)
(1.1)

Z(f) =

∫
exp(f(x)) dx (1.2)

- p(x) represents the probability density of a data point x in the model.
- f(x) is the energy function, often represented by a neural network or other parametric model. The function
f(x) assigns lower energy values to more probable (or desired) outcomes and higher energy values to less
probable ones.
- Z(f), known as the partition function, is a normalization constant. It ensures that p(x) is a valid proba-
bility distribution by integrating over all possible states x.

In practice, calculating the partition function Z(f) is often computationally intractable, as it involves inte-
grating over all possible configurations of x. This is one of the main challenges in using EBMs. We have
seen techniques like Contrastive Divergence and Score Matching to train EBMs.

Pros of using EBM: good model to capture structured data.
Cons of using EBM: It is difficult to sample.

1.2 New Content

1. Noise Contrastive Estimation (NCE)

Noise Contrastive Estimation (NCE) is a technique commonly used to train models where calculating the
exact likelihood is challenging. Instead of maximizing the likelihood directly, NCE reformulates the problem
as a classification task that distinguishes between observed data samples (from the true distribution) and
samples from a noise distribution. By learning to discriminate between ”real” and ”noise” samples, the model
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can indirectly approximate the probability of the data without needing to compute complex normalization
terms, such as the partition function in EBMs.

NCE assumes that we have two types of data: 1). True data samples: samples from the actual data
distribution pdata(x). and 2). Noise samples: samples generated from a known noise distribution pnoise(x),
which serves as a negative reference.

Binary NCE

In a binary NCE, we can use logistic regression as the classification objective. The model is trained to
classify:
- Positive examples (y = 1) as samples from the data distribution pdata(x).
- Negative examples (y = 0) as samples from the noise distribution pnoise(x).

Formally, we define the objective function as follows:

• Let x ∼ pdata(x) represent samples drawn from the data distribution, and y = 0 denote a noise or
negative label.

• The objective is to maximize the expected log-likelihood for our discriminator Dθ(x) for correctly
classifying positive and negative samples. This can be expressed as:

max
θ

Epdata
[logDθ(x)] + Epnoise [log(1−Dθ(x))] (1.3)

∂L(θ)
∂Dθ(x)

→ Epdata

[
1

Dθ(x)

]
+ Epnoise

[
−1

1−Dθ(x)

]
= 0 (1.4)

Solving this equation provides insight into the optimal form of Dθ(x). Specifically, we find that the optimal
discriminator D∗

θ(x) is the ratio of the probability densities for data and noise distributions:

pdata(x)

pnoise(x)
=

D∗
θ(x)

1−D∗
θ(x)

⇒ D∗
θ(x) =

pdata(x)

pdata(x) + pnoise(x)
(1.5)

Assuming parameterization with p(x) = pdata + pnoise, we get:

D∗
θ(x) =

pdata(x)

pdata(x) + pnoise(x)
(1.6)

This expression represents the probability that a sample x belongs to the data distribution as opposed to the
noise distribution, effectively separating the data from noise by comparing their relative probabilities. Using
this optimal discriminator simplifies the problem by allowing us to focus on the data distribution without
requiring a direct computation of the partition function.

Now we can proceed to define the energy-based probability density function p(x) in terms of an energy
function:

p(x) =
exp(fθ(x))

Z(θ)
= exp (fθ(x)− log(Z(θ))) = exp(gθ(x)) (1.7)

where:
- Z(θ) is the partition function, given by Z(θ) =

∫
exp(fθ(x)) dx,

- gθ(x) represents the energy function, fθ(x)− log(Z(θ)).
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Then, we define the discriminator Dθ(x) in NCE as:

Dθ(x) =
exp(gθ(x))

exp(gθ(x)) + pnoise(x)
(1.8)

To use NCE, we need to sample from pnoise(x) and ensure it has some density.

Ranking-Based NCE: Extending NCE to Multi-Class

To extend NCE to a multi-class scenario, we consider xk ∼ pdata(x), where xk belongs to one of k classes,
and {xj}k−1

j=1 ∼ pnoise(x).

The objective becomes:

q(k|
(
{xi}ki=1

)
) =

pdata(xi)
∏k−1

i=1
pnoise(xj)∑k

j=1 pdata(xj)
∏k

i ̸=j pnoise(xi)
(1.9)

divide by
∏k

i=1
pnoise(xi):

q =
pdata(xk)

pnoise(xk)

/ k∑
j=1

pdata(xj)

pnoise(xj)
(1.10)

Let gθ(x) =
pdata(x)

pnoise(x)
. Then we can parameterize it as:

pθ
(
k|{xi}ki=1

)
=

exp(gθ(xi))∑k
j=1 exp(gθ(xj))

(1.11)

To minimize the KL divergence, we aim to solve:

min KL
(
q
(
k | {xi}ki=1

)
∥ pθ

(
k | {xi}ki=1

))
(1.12)

Expanding this, we get:

= −
n∑

i=1

gθ(xi)− log

k∑
j=1

exp(gθ(xj))

 (1.13)

where xi ∼ pdata and xj ∼ pnoise for j ̸= i.

We also have the likelihood ratio for each x′ relative to the anchor x:

p(x′ | x) = pn(x
′) exp(ϕ(x′)Tϕ(x)) (1.14)

which implies:
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p(x′ | x)
pn(x′)

= exp(ϕ(x′)Tϕ(x)) (1.15)

Finally, we minimize ϕ as follows:

min
ϕ

−
n∑

i=1

ϕ(x′
k)

Tϕ(xi)− log

k−1∑
j=1

exp(ϕ(xj)
Tϕ(xi))

 (1.16)

This completes the derivation of SimCLR.

2. Extending to CLIP

We can view CLIP as a multimodal extension of SimCLR.

Let x represent text and y represent an image. We have the following conditional probabilities:

p(y|x) = pn(y) exp(ϕ(x)
Tµ(y)) (1.17)

p(x|y) = pn(x) exp(ϕ(x)
Tµ(y)) (1.18)

To extend the NCE loss to image-text pairs, we minimize the following objective:

min
ϕ,µ

−
n∑

i=1

ϕ(xi)
Tµ(yi)− log

∑
yj∼Pn(y)

exp(ϕ(xi)
Tµ(yj))

 (1.19)

In practice, CLIP uses a symmetric loss over both text-to-image and image-to-text directions, resulting in
the final objective:

LCLIP = −1

2

n∑
i=1

(
log

exp(ϕ(xi)
Tµ(yi))∑

yj
exp(ϕ(xi)Tµ(yj))

+ log
exp(ϕ(xi)

Tµ(yi))∑
xj

exp(ϕ(xj)Tµ(yi))

)
(1.20)


