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19.1 Recap

SimCLR (Simple Contrastive Learning of Visual Representations)

• self-supervised contrastive learning method for visual representations

• works with a single modality: images

• trains the model to bring augmented views of the same image closer together in the embedding space,
while pushing apart representations of different images

CLIP (Contrastive Language-Image Pre-training)

• extends contrastive learning to multiple modalities using image-text pairs

• learns aligned representations across the visual and textual domains

• trains the model to maximize the cosine similarity between embeddings of matching image-text pairs,
while minimizing it for non-matching pairs

Energy-Based Models (EBM) and Noise-Contrastive Estimation (NCE)

1. conditional probability in the same modality

p(x′ | x) = p(x′) exp(φ(x)⊤φ(x⊤)) (1.1)

2. cross-modal conditional probabilities

p(y | x) = p(y) exp(φ(x)⊤ν(y)) (1.2)

p(x | y) = p(x) exp(φ(x)⊤ν(y)) (1.3)
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19.2 SimCLR

All of them use ranking-based NCE to estimate a special EBM. SimCLR is as follows:

p (x′ | x) = p (x′) exp
(
φ(x)⊤φ (x′)

)
(2.1)

D = {(xi, x
′
i, (x

′1
i , ..., x

′k
i ))}ni=1 (2.2)

We formulate the loss function using the follows:

max
φθ

n∑
i=1

φ (xi)
⊤
φ (x′

i)− log

k∑
j=1

exp
(
φ (xi)

⊤
φ
(
x′j
i

)) (2.3)

max
φ

f(θ); Dθl(θ) =

n∑
i=1

φ (xi)
⊤
φ (x′

i) · (∇θφ (xi) +∇θφ (x′
i)) (2.4)

=

n∑
i=1

 k∑
j=1

exp
(
φ (xi)

⊤
φ
(
x′j
i

))
·
(
∇θφ (xi) +∇θφ

(
x′j
i

))
∑k

j=1 exp
(
φ (xi)

⊤
φ
(
x′j
i

))
 = O(nk) (2.5)

Computation cost is O(nk). We typically also use k=n, therefore the computation cost becomes O(n2).

To further demonstrate with data, assume we have:

{xi}Bi=1 ∼ {x′
i}

B
i=1 (2.6)

Therefore, the computation cost will be:

i, {x− i} (B − 1) ⇒∼ O
(
B2
)

(2.7)

To circumvent this quadratic computation cost, we can use a binary-based NCE instead of a ranking-based
NCE. With this, instead of O(nk), we can get O(2B) ∼ O(B).

Coming back to this expression, to derive spectral learning and Bootstrap your own latent (BYOL):

p (x∗ | x) = p (x′) exp
(
φ(x)⊤φ(x)

)
(2.8)

We remove the exponential because it makes the gradient calculation harder:

p (x′ | x) = p (x′)φ (x′)
⊤
φ(x) (2.9)
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The L2 loss function is now defined as:

l2

∫ ∥∥∥p (x′ | x)− p (x′)φ (x′)
⊤
φ(x)

∥∥∥2 dxdx′ (2.10)

=

∫
p (x′ | x)2 dxdx′ − 2

∫
p (x′ | x) p (x′) (2.11)

p (x′)
⊤
φ(x)dxdx′ (2.12)

We know p (x′ | x) p(x) = p (x′) p(x)p (x′)
⊤
p(x) from p (x′ | x) = p (x′)φ (x′)

⊤
φ(x):

∫ ∥∥∥∥∥ p (x′, x)√
p(x)

√
p(x)

√
p (x′)

√
p(x)2φ (x′)

′
φ(x)

∥∥∥∥∥
2

dxdx′ (2.13)

=

∫
(

p (x′, x)√
p(x)

√
p(x)

)2dxdx′ − 2

∫
(p (x′, x) p(x′)Tφ(x))dxdx′ +

∫
p(x′)p(x)(φ(x′)Tφ(x))2dxdx′ (2.14)

We observe that the terms in the integrals can be simplified using the definition of expectation; therefore we
can apply sampling here. The above simplifies to:

= −2Ep(x,x′)

[
φ (x′)

⊤
φ(x)

]
+ Ep(xp(x)

[[
φ(x′)⊤(φ(x)

)2]
. (2.15)

From above, we can see that we sample only once but can use it for computing both expectation terms.

p (x′, x) = p(x)φ(x)⊤p (x′)φ (x′) (2.16)

but we write this as

p (x′, x) = Ψ(x)⊤Ψ(x′) (2.17)

This is called the Eigen-decomposition spectral perspective of representation.

19.2.1 BYOL w/o ν

The loss function is, using similar reason to above:

min
φ,ν

∫ (
ρ(x′, x)√
ρ(x′)

√
ρ(x)

−
√

ρ(x′)
√
ρ(x) ν(x′)⊤φ(x)

)
||2 dxdx′ (2.18)
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Alternative Optimization

Add a constraint such that ν = φ.

(min problem above) ∝ 2Ep(x′,x)

[
ν(x)Tφ(x)

]
− Ep(x′)

[
φ(x′)TEp(x)

[
φ(x)φ(x)⊤

]
φ(x′)

]
(2.19)

With the above expanded, we can do separate sampling.

Λt = Ep(x)

[
νΨ(x)νΨ(x)

T
]

(2.20)

−2Ep(x,x′)

[
φ(x′)ν(x)T

]
+ Ep(x)

[
φ(x)TΛtφ(x)

]
(2.21)

19.3 PCA

Finding the maximal eigenspace while matching the y’s are different.

We have the following, noting that the trace operator is invariant under cyclic permutations:

ρ̂ = (x, x′) ∈ Rn×n, n samples (3.1)

Ψ(x) ∈ Rn×d (3.2)

Ep(x,x′)

[
Ψ(x)Ψ(x′)T

]
(3.3)

Ep(x) [Ψ(x)TΨ(x)] = Id×d (3.4)

Penalty method:

max
Ψ

Ep(x,x′)

[
Ψ(x)Ψ(x)T

]
− λ · trace(Ep(x)

(
Ψ(x)Ψ(x)T

)
− I)2 (3.5)


