CSE6243: Advanced Machine Learning Fall 2024 Lecture 19: Representation Learning from Spectral Decomposition view Lecturer: Bo Dai Scribes: Vidhya Kewale & Sandilya Sai Garimella

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

19.1 Recap

SimCLR (Simple Contrastive Learning of Visual Representations)

- self-supervised contrastive learning method for visual representations
- works with a single modality: images
- trains the model to bring augmented views of the same image closer together in the embedding space, while pushing apart representations of different images

CLIP (Contrastive Language-Image Pre-training)

- extends contrastive learning to multiple modalities using image-text pairs
- learns aligned representations across the visual and textual domains
- trains the model to maximize the cosine similarity between embeddings of matching image-text pairs, while minimizing it for non-matching pairs

Energy-Based Models (EBM) and Noise-Contrastive Estimation (NCE)

1. conditional probability in the same modality

$$
p(x' | x) = p(x') \exp(\varphi(x)^\top \varphi(x^\top)) \tag{1.1}
$$

2. cross-modal conditional probabilities

$$
p(y \mid x) = p(y) \exp(\varphi(x)^\top \nu(y)) \tag{1.2}
$$

$$
p(x \mid y) = p(x) \exp(\varphi(x)^\top \nu(y)) \tag{1.3}
$$

19.2 SimCLR

All of them use ranking-based NCE to estimate a special EBM. SimCLR is as follows:

$$
p(x' | x) = p(x') \exp (\varphi(x)^{\top} \varphi(x')) \qquad (2.1)
$$

$$
D = \{(x_i, x'_i, (x'_i^1, ..., x'^k_i))\}_{i=1}^n
$$
\n(2.2)

We formulate the loss function using the follows:

$$
\max_{\varphi_{\theta}} \sum_{i=1}^{n} \left[\varphi(x_i)^{\top} \varphi(x_i') - \log \sum_{j=1}^{k} \exp \left(\varphi(x_i)^{\top} \varphi(x_i') \right) \right]
$$
(2.3)

$$
\max_{\varphi} f(\theta); \quad D_{\theta}l(\theta) = \sum_{i=1}^{n} \varphi(x_i)^{\top} \varphi(x_i') \cdot (\nabla_{\theta} \varphi(x_i) + \nabla_{\theta} \varphi(x_i')) \tag{2.4}
$$

$$
= \sum_{i=1}^{n} \left(\sum_{j=1}^{k} \frac{\exp \left(\varphi \left(x_{i} \right)^{\top} \varphi \left(x_{i}^{\prime j} \right) \right) \cdot \left(\nabla_{\theta} \varphi \left(x_{i} \right) + \nabla_{\theta} \varphi \left(x_{i}^{\prime j} \right) \right)}{\sum_{j=1}^{k} \exp \left(\varphi \left(x_{i} \right)^{\top} \varphi \left(x_{i}^{\prime j} \right) \right)} \right) = \mathcal{O}(nk) \tag{2.5}
$$

Computation cost is $\mathcal{O}(nk)$. We typically also use k=n, therefore the computation cost becomes $\mathcal{O}(n^2)$. To further demonstrate with data, assume we have:

$$
\{x_i\}_{i=1}^B \sim \{x_i'\}_{i=1}^B
$$
\n(2.6)

Therefore, the computation cost will be:

$$
i, \{x - i\} \quad (B - 1) \Rightarrow \sim \mathcal{O}(B^2)
$$
\n
$$
(2.7)
$$

To circumvent this quadratic computation cost, we can use a binary-based NCE instead of a ranking-based NCE. With this, instead of $\mathcal{O}(nk)$, we can get $\mathcal{O}(2B) \sim \mathcal{O}(B)$.

Coming back to this expression, to derive spectral learning and Bootstrap your own latent (BYOL):

$$
p(x^* | x) = p(x') \exp \left(\varphi(x)^\top \varphi(x) \right) \tag{2.8}
$$

We remove the exponential because it makes the gradient calculation harder:

$$
p(x' | x) = p(x') \varphi(x')^\top \varphi(x)
$$
\n(2.9)

The L2 loss function is now defined as:

$$
l_2 \int \left\| p\left(x' \mid x\right) - p\left(x'\right) \varphi\left(x'\right)^\top \varphi\left(x\right) \right\|^2 dxdx' \tag{2.10}
$$

$$
= \int p(x' | x)^{2} dx dx' - 2 \int p(x' | x) p(x')
$$
 (2.11)

$$
p(x')^{\top} \varphi(x) dx dx'
$$
 (2.12)

We know $p(x' | x) p(x) = p(x') p(x) p(x')^{\top} p(x)$ from $p(x' | x) = p(x') \varphi(x')^{\top} \varphi(x)$:

$$
\int \left\| \frac{p(x',x)}{\sqrt{p(x)}\sqrt{p(x)}} \sqrt{p(x')} \sqrt{p(x)^2} \varphi(x')' \varphi(x) \right\|^2 dx dx' \tag{2.13}
$$

$$
= \int \left(\frac{p(x',x)}{\sqrt{p(x)}\sqrt{p(x)}}\right)^2 dx dx' - 2 \int \left(p(x',x)p(x')^T \varphi(x)\right) dxdx' + \int p(x')p(x)(\varphi(x')^T \varphi(x))^2 dxdx' \tag{2.14}
$$

We observe that the terms in the integrals can be simplified using the definition of expectation; therefore we can apply sampling here. The above simplifies to:

$$
= -2\mathbb{E}_{p(x,x')} \left[\varphi \left(x' \right)^{\top} \varphi(x) \right] + \mathbb{E}_{p(xp(x)} \left[\left[\varphi(x')^{\top} \left(\varphi(x) \right)^2 \right]. \tag{2.15}
$$

From above, we can see that we sample only once but can use it for computing both expectation terms.

$$
p(x',x) = p(x)\varphi(x)^\top p(x')\varphi(x')
$$
\n(2.16)

but we write this as

$$
p(x',x) = \Psi(x)^\top \Psi(x')
$$
\n(2.17)

This is called the Eigen-decomposition spectral perspective of representation.

19.2.1 BYOL w/o ν

The loss function is, using similar reason to above:

$$
\min_{\varphi,\nu} \int \left(\frac{\rho(x',x)}{\sqrt{\rho(x')} \sqrt{\rho(x)}} - \sqrt{\rho(x')} \sqrt{\rho(x)} \quad \nu(x')^\top \varphi(x) \right) ||^2 dx dx' \tag{2.18}
$$

Alternative Optimization

Add a constraint such that $\nu = \varphi$.

$$
(\text{min problem above}) \propto 2\mathbb{E}_{p(x',x)}\left[\nu(x)^T\varphi(x)\right] - \mathbb{E}_{p(x')}\left[\varphi(x')^T\mathbb{E}_{p(x)}\left[\varphi(x)\varphi(x)^T\right]\varphi(x')\right] \tag{2.19}
$$

With the above expanded, we can do separate sampling.

$$
\Lambda_t = \mathbb{E}_{p(x)} \left[\nu_\Psi(x) \nu_\Psi(x)^T \right] \tag{2.20}
$$

$$
-2\mathbb{E}_{p(x,x')} \left[\varphi(x')\nu(x)^T \right] + \mathbb{E}_{p(x)} \left[\varphi(x)^T \Lambda_t \varphi(x) \right] \tag{2.21}
$$

19.3 PCA

Finding the maximal eigenspace while matching the y's are different.

We have the following, noting that the trace operator is invariant under cyclic permutations:

$$
\hat{\rho} = (x, x') \in \mathbb{R}^{n \times n}, n \text{ samples}
$$
\n(3.1)

$$
\Psi(x) \in \mathbb{R}^{n \times d} \tag{3.2}
$$

$$
\mathbb{E}_{p(x,x')} \left[\Psi(x) \Psi(x')^T \right] \tag{3.3}
$$

$$
\mathbb{E}_{p(x)}\left[\Psi(x)T\Psi(x)\right] = I_{d \times d} \tag{3.4}
$$

Penalty method:

$$
\max_{\Psi} \mathbb{E}_{p(x,x')} \left[\Psi(x) \Psi(x)^{T} \right] - \lambda \cdot \text{trace}(\mathbb{E}_{p(x)} \left(\Psi(x) \Psi(x)^{T} \right) - I)^{2} \tag{3.5}
$$