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1.1 Recap: ML paradigms

1. Supervised Learning

• Data: The datasetD consists of pairs (xi, yi), where each xi is an input and yi is the corresponding
label or output. This is common in tasks like classification or regression.

• Algorithm: The goal of the algorithm (denoted by Alg) is to learn a function f(·) that maps
inputs from the input space X to the output space Y.

D = {(xi, yi)}ni=1 ∈ X × Y

Alg(D) ⇒ f(·) : X → Y

2. Unsupervised Learning

• Data: The dataset D consists only of inputs xi, without any associated labels. This is used in
tasks like clustering or dimensionality reduction.

• Algorithm: The algorithm seeks to learn a function f(·) that maps the input space X to some
latent space Z which represents the underlying structure in the data.

D = {xi}ni=1 ∈ X

Alg(D) ⇒ f(·) : X → Z

3. Reinforcement Learning

• Data: The dataset D consists of sequences of state (si), action (ai), reward (ri), and next state
(s′i) tuples, collected over time as the agent interacts with an environment.

• Algorithm: The goal is to learn a policy π(·|s) that maps states s to a probability distribution
over actions ∆(A), aiming to maximize cumulative rewards.

Alg(Env) ⇒ (D = {(si, ai, ri, s′i)}Ti=1, π(·|s) : S → ∆(A))

The first two (Supervised and Unsupervised) are considered passive paradigms. RL is considered active
because it must gather its own data used to improve its policy by interacting with the environment.
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1.2 New Content

1.2.1 Optimization Motivation

Within the paradigms of ML, optimization can be used to find the appropriate Alg which best satisfies
problems in each paradigm. Optimization Problem:

min
x∈Ω

f(x)

s.t. g(x) ≥ 0

Where f(x), sometimes also denoted L(x), is a loss (objective) function subject to constraint g(x) ≥ 0, which
can also be optional. f(x) is a convex function, Ω is some feasible domain (a convex set), and g(x) is a
convex function. Convex optimization has become a popular tool for solving ML problems recently because
of known polynomial algorithms.

1.2.1.1 Examples

These are some of the ML algorithms framed as equivalent optimization problems:

1. Regression: For y ∈ R, find f(·) : X → R such that f = argmin
f

1
n

∑n
i=1(yi − f(xi))

2

2. (Binary) Classification: For y ∈ {0, 1}, find f(·) : X → {0, 1} such that

f = argmin
f

n∑
i=1

yi log(P (y = 1|xi)) + (1− yi) log(1− P (yi = 1|xi))

where P (yi = 1|xi) =
1

1+exp (−f(xi))

3. Dimension Reduction: Dimensionality reduction is a type of unsupervised learning problem.

Generally, we can frame the problem as:

Let, xi be a datapoint in the original dataset and zi be a datapoint in the modified dataset, then
xi ∈ Rd×1, zi ∈ Rp×1 where p < d. One of the ways to solve this problem is to use PCA, where we do
a linear transformation, specifically we find a matrix A such that A ∈ Rd×p and x = Az and then we
solve the optimization problem min

A,z
||xi −Azi||2.

Note how if we restrict z such that z ∈ {0, 1}p and ||z||2= 1, i.e. restricting z to be a binary vector
containing a 1 in only one entry and zeros everywhere else, then this becomes a clustering problem with
p clusters. In this case, each of the p entries of the z vector correspond to one of p possible clusters.

4. Bayesian Regression: Professor emphasized that for Bayesian Linear Regression, the optimization
occurs at distribution level, as opposed to the above examples, where the optimization occurs only at
the parameters/weights level assuming a fixed distribution as in Ordinary Least Squares Regression.
Please refer to the Appendix at the end of the PDF for details of Bayesian Linear Regression that were
talked about in class at a high level.

It is also possible to take discrete (and often times intractable) problems to the continuous space and frame
them as optimization problems. Using known efficient optimization techniques can reveal insights or be used
to approximate the true optimal in the original discrete setting.
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Ex: For some reward function R(·), find a binary (integer) vector x such that min
x∈{0,1}d

R(x). (NP Hard)

If we relax the discrete restriction on x and treat it as a probability vector instead, the objective of finding
x such that min

x∈[0,1]d
E[R(x)] =

∑
p(xi) ·R(xi) becomes a tractable optimization problem.

1.2.2 Properties of Convex Optimization

1.2.2.1 Definitions

1. Convex Set - Ω denotes a convex set if ∀x, y ∈ Ω and for any t ∈ [0, 1], tx + (1 − t)y ∈ Ω. In other
words, if x, y ∈ Ω, all the points along their interpolation (line) must also be a member of the convex
set.

2. Convex Function - f(·) : Ω → R is a convex function if the domain is a convex set and ∀x, y ∈ Ω and
t ∈ [0, 1], f (tx+ (1− t)y) ≤ tf(x) + (1 − t)f(y). If t = 1/2, what the definition implies is that the
value of the average of two points is at most the average of the values of the two points within the
convex set. This idea can be extended for any t ∈ [0, 1], which essentially states that the interpolation
of the value between two points is always at least the value of the interpolation.

3. Local minimum - Let ω ∈ Ω denote a local minimum for convex function f(·) if ∀u, ||ω − u||≤ ρ and
f(u) ≥ f(ω). ρ describes a small threshold distance which defines a region around ω, and u represents
points in the convex set domain which fall inside that region.

With these definitions, they imply an important conclusion which helps to motivate convex optimization:
every local minimum is a global minimum for a convex function.

1.2.2.2 Propositions

Proposition 1. If f(·) is convex and ω∗ is a local minimum, then ω∗ is a global minimum of f .

Proof:

1. Let ω◦ denote a ”true” global minimum such that f(ω◦) < f(ω∗), where ω∗ is a local minimum of
convex function f .

2. By convexity of f , we have that

f(tω◦ + (1− t)ω∗) ≤ tf(ω◦) + (1− t)f(ω∗)

3. Continuing with the assumption that f(ω◦) < f(ω∗):

f(tω◦ + (1− t)ω∗) ≤ tf(ω◦) + (1− t)f(ω∗)

≤ tf(ω∗) + (1− t)f(ω∗) = f(ω∗)

4. Note how by the definition of the local minimum ω∗, there exists some threshold ρ which describes a
region where f(ω∗) ≤ f(u), for all u such that ||ω∗−u||≤ ρ. However, from step 3, we know that there
is some t ∈ [0, 1] which satisfies the inequality and implies f(tω◦ + (1− t)ω∗) ≤ f(ω∗).
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5. This results in a contradiction, because it is now possible to define a t which describes a point u =
(tω◦+(1− t)ω∗) such that ||ω∗−u||≤ ρ. By the convexity definition described in step 3, f(u) < f(ω∗),
but by the local minimum definition, f(u) ≥ f(ω∗).This region would now contain a point lower than
the local minimum and violate the given condition of ω∗ being a local minimum. Therefore, the
assumption that there exists some ω◦ such that f(ω◦) < f(ω∗) must be false, implying that a local
minimum for a convex function must also be a global minimum.

For completeness in the contradiction argument, technically the point u could be such that f(u) = f(ω∗)
for the specific local minimum defined ω∗. However, this would imply that u is also a local minimum
and the same argument would apply that the ρu neighborhood around u must contain no points with
f(·) value greater than f(u). Since ρ for the local minimum definition is always nonzero, there will
eventually be a point along the interpolation between ω◦ and ω∗ such which creates a contradiction.

Proposition 2. First Order Conditions for local minimums:

• x is a local minimum iff ∇f(x) = 0 (1st order check for local minima) and there are no other constraints.
Note: this necessary and sufficient condition for local minimum is specifically for the convex setting.
In general, ∇f(x) = 0 is only a necessary condition for local minima.

• More generally, (i.e. considering constraints), x is a local minimum iff ∀y ∈ Ω, ∇f(y)⊤(y − x) ≥ 0.
Intuitively, this indicates that moving from x to any other feasible point y does not decrease the value
of the function.

Example: As an example of unconstrained optimization, in linear regression, we seek to find ω to minimize
||Y − ω⊤X||2.

The solution to the unconstrained optimization of the least squares linear regression is defined as:

f(x) = wTx, min
w

||Y − wTX||= l(w)

is given by w∗ = (XXT )−1XY T .

Proof: Here is a proof using the propositions above. Another, more commonly used, linear algebraic proof
exists but this proof particularly emphasizes the propositions above and uses the fact that the loss function
is convex.

Thus, ∇l(w∗) = 0 (w∗ is a local/global minimum)

=⇒ (Y − wTX)XT = 0 =⇒ (Y XT ) = (wTXXT )

=⇒ w∗ = (XXT )−1XY T (assumption: XTX is a full rank matrix)

This concludes the proof.

1.3 Appendix

1.3.1 Bayesian Linear Regression

Bayesian linear regression is a probabilistic approach to linear regression where model parameters are treated
as random variables characterized by probability distributions rather than fixed values. Generally speaking,
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in Bayesian Learning algorithms, including linear regression we integrate over the posterior of weights as
opposed to using a point estimate of the parameters as in MLE, LSE, etc.

• Prior Distribution and Likelihood: Prior distribution captures the prior belief about the weights.
Assuming Gaussian for the weights, θ = (w, σ2):

p(w) = N (w|m0,S0)

where m0 and S0 represent the mean and covariance matrix of the prior.

Assuming Gaussian noise, the likelihood is given by:

p(y|X,w, σ2) = N (y|Xw, σ2I)

where X is the design matrix, and y is the vector of observations.

• Posterior Distribution: Using prior and likelihood, the posterior is computed using Bayes’ theorem:

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)

• Optimization at distribution level using KL Divergence: The Kullback-Leibler (KL) divergence is used
to measure the difference between two distributions. In the context of Bayesian linear regression, it
measures how close an approximate distribution q(w) is to the true posterior p(w|X,y):

KL(q(w)∥p(w|X,y)) =

∫
q(w) log

q(w)

p(w|X,y)
dw

Minimizing the KL divergence ensures that q(w) is a good approximation of the posterior distribution.

This example shows in detail how we use optimization at distribution level in Bayesian Linear Regression
algorithm.


