
CSE6243: Advanced Machine Learning Fall 2023

Lecture 12: Learning with MDPs
Lecturer: Bo Dai Scribes: Zihao Xiao; Sharma, Dhruv

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

12.1 Recap

12.1.1 Bellman Equation

The Bellman equations can be expressed in the following linear algebra form:

V π = Rπ + γPπV π

Qπ = R+ γPQπ

Bellman Optimal Equation:

V ∗(s) = max
a∈A

{
R(s, a) + γEs′∼P (·|s,a) [V

∗(s′)]
}

The Bellman Optimal Equation for Q∗ is given by:

Q∗(s, a) = R(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q∗(s′, a′)

]

12.1.2 Policy Evaluation via Solving Linear Equations in the Planning Setting

We can get the matrix form of the Bellman Equation for V π:

V π = (I − γPπ)
−1

Rπ =
(
I + γPπ + (γPπ)

2
+ . . .

)
Rπ.

12.1.3 Policy Optimization

The analytical prediction algorithm is not feasible for large state spaces since it runs exponentially.

12.2 New Content

12.2.1 Policy Iteration

Policy iteration is an approach to finding the optimal policy by repeatedly improving an initial policy. The
process alternates between policy evaluation (calculating the value function V (s) for a given policy) and

12-1

12-2 Lecture 12: Learning with MDPs

policy improvement (updating the policy based on the current value function).These steps are repeated until
the policy converges to the optimal policy, meaning further improvements do not yield a better outcome.

Algotithmn Steps-Policy Iteration

1. Initialize the policy π0.

2. For t = 0, 1, 2, . . .

• Policy Evaluation: Solve V πt = Rπt + γPπV πt

• Policy Improvement: Update the policy by setting

πt+1 ← argmax
π
{Rπ + γPπV πt}

12.2.1.1 Theorem 12.1

Let u0 initialize VI , with V π0 = V0 as the initial policy π0. If u0 = V0, then for all n, un ≤ Vn.

12.2.1.2 Lemma 12.1

This statement is commonly used in policy iteration to show that the sequence of value functions {Vn},
generated by evaluating an improving sequence of policies {πn}, is monotonic and converges to the optimal
value function V ∗.

Vn ≤ Vn+1 ≤ V ∗

Proof:

Rn+1 = Rπn+1 =
∑
a

R(s, a)πn+1(a|s)

Pn+1 =
∑
a

P (s′|s, a)πn+1(a|s)

Rn+1 + γPn+1Vn ≥ Rn + γPnVn

Rn + γPnVn = Vn

Rn+1 ≥ (I − γPn+1)Vn

Vn+1 ≥ (I − γPn+1)
−1

Rn+1 = I + γPn+1 + (γPn+1)
2 + . . . ≥ Vn

Since each Vn ≤ Vn+1 and the optimal value function V ∗ is the fixed point of the Bellam optimality operator,
we conclude that:

Vn ≤ Vn+1 ≤ V ∗

This completes the proof.

Lecture 12: Learning with MDPs 12-3

12.2.1.3 Lemma 12.2

If ϕ is monotonic, assuming u ≤ v, we have:

ϕ(u) ≤ ϕ(v)

Here, ϕ(u) is defined as the maximum expected reward and discounted future value under a policy π. Rπu

and Pπu represent the reward and transition probabilities for an optimal policy πu associated with u.

Proof:
ϕ(u) = max

π
(Rπ + γPπu) = Rπu + γPπuu

Rπu + γPπuu ≤ Rπu + γPπuv

Rπu + γPπuv ≤ max
π

(Rπ + γPπv) = ϕ(v)

This completes the proof.

Proof of ϕ(Vn) ≤ Vn+1:

To prove that ϕ(Vn) ≤ Vn+1, we need to leverage the properties of the Bellman operator ϕ and the definition
of Vn+1 in the context of policy iteration.

Define Vn+1 :
Vn+1 = max

π
(Rπ + γPπVn) = Rπn+1 + γPπn+1Vn+1

Apply the Bellman Operator ϕ to Vn:

ϕ(Vn) = max
π

(Rπ + γPπVn) = Rπn+1 + γPπn+1Vn

3. According to Lemma 12.1 Vn ≤ Vn+1:

Therefore, it follows that:
ϕ(Vn) ≤ Vn+1

This completes the proof.

12.2.2 Value Iteration

In value iteration, we calculate the optimal state-value function by repeatedly updating the estimate V (s).
Each new value of V (s) is derived using the Bellman equations based on the current estimates. This process
continues until a convergence criterion is satisfied.

Algorithm Steps- Value Iteration with Exploration Bonus

1. Initialization:

• Initialize the value function V0(s) arbitrarily (e.g., V0(s) = 0 for all s).

• Initialize counts n(s, a) = 0 for all state-action pairs (s, a).

2. For t = 1 to T do:

(a) Policy Execution and Data Collection:

12-4 Lecture 12: Learning with MDPs

• Derive the policy πt from the current value estimates:

πt(s) = argmax
a∈A

(
R̂(s, a) + γ

∑
s′

P̂ (s′|s, a)Vt(s
′) + b̂(s, a)

)

• Execute policy πt and interact with the environment.

• Collect new data (state transitions, rewards) and update counts:

n(s, a)← n(s, a) + number of times action a is taken in state s during iteration t

(b) Estimate Model Parameters:

• Estimated reward function R̂(s, a):

R̂(s, a) =
Total reward received when taking action a in state s

n(s, a)

• Estimated transition probabilities P̂ (s′|s, a):

P̂ (s′|s, a) = Number of times transitioned to s′ from s using a

n(s, a)

(c) Compute Exploration Bonus:

• Define the exploration bonus term b̂(s, a):

b̂(s, a) =

√
c

n(s, a)

where c > 0 is a constant (tuning parameter).

(d) Value Function Update:

• Update the value function for all states s ∈ S:

Vt+1(s) = max
a∈A

(
R̂(s, a) + γ

∑
s′

P̂ (s′|s, a)Vt(s
′) + b̂(s, a)

)

3. Convergence Check:

• If ∥Vt+1−Vt∥∞< ϵ, where ϵ > 0 is a small threshold, then stop; else, continue to the next iteration.

Output:

After the value iteration process converges, we obtain an approximation of the optimal value function V ∗

given by VT , where T is the final iteration. The corresponding optimal policy π∗ can be derived from VT as
follows:

π∗(s) = argmax
a∈A

(
R̂(s, a) + γ

∑
s′

P̂ (s′|s, a)VT (s
′)

)

Optimal Value Updates:

For the optimal value updates during the iteration process, we use the following equations:

1. Optimal State-Value Update:

Lecture 12: Learning with MDPs 12-5

The state-value function is updated using the Bellman optimality equation:

V ∗
t+1(s) = max

a∈A

(
R̂(s, a) + γ

∑
s′

P̂ (s′|s, a)V ∗
t (s

′)

)

Alternatively, using the expectation over next states:

V ∗
t+1(s) = max

a∈A

(
R(s, a) + γEs′∼P (·|s,a)[V

∗
t (s

′)]
)

To incorporate a learning rate α (where 0 < α ≤ 1), we can use a weighted update:

V ∗
t+1(s)← αV ∗

t (s) + (1− α)

(
max
a∈A

[R(s, a) + γV ∗
t (s

′)]

)
2. Optimal Action-Value (Q-Value) Updates:

The action-value function Q∗(s, a) can be updated using:

Q∗
t+1(s, a)← αQ∗

t (s, a) + (1− α)

(
R(s, a) + γmax

a′∈A
Q∗

t (s
′, a′)

)
Alternatively, defining an intermediate value ∆Q∗

t (s, a):

∆Q∗
t (s, a) = R(s, a) + γmax

a′∈A
Q∗

t (s
′, a′)

Then the update becomes:

Q∗
t+1(s, a)← αQ∗

t (s, a) + (1− α)∆Q∗
t (s, a)

3.Q-Value Update with Probability Transition Matrix:

Incorporating the transition probability matrix PQ, the Q-value update can be expressed as:

Q∗
t+1(s, a)← (1− α)Q∗

t (s, a) + α

(
R(s, a) + γ

∑
s′

P (s′|s, a)max
a′∈A

Q∗
t (s

′, a′)

)

