
CSE6243: Advanced Machine Learning Fall 2024

Lecture 23: Policy Gradient and Actor Critic
Lecturer: Bo Dai Scribes: Malav Patel

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

23.1 Recap

In the previous lecture(s) we discussed the Bellman Optimality Equation and the Bellman Expectation
Equation. There are two main settings we discussed, those being planning and learning. In the planning
stage we are often interested in determining an optimal policy π∗, evaluating a particular policy π (i.e.
determine V π, or doing both (via policy iteration). Let us write a simple two step procedure that describes
policy iteration:

Algorithm 1 Policy Iteration

Require: initial policy π1

1: for t = 1, . . . , T do
2: Solve V πt = Rπt + γPπtV πt (policy evaluation)
3: Update πt+1 = argmax

π
Rπ + γPπV πt (policy update)

4: end for
5: return πT

With large enough T we showed that the algorithm converges to V ∗ and π∗.

23.2 New Content

In the learning setting how does policy iteration change? In this case we no longer have a reward model R
or transition matrix P , so the above algorithm must be changed.

23.2.1 Modifying the Policy Update

In the learning setting we are now concerned with a policy update as the solution to the following optimization
problem:

l(θ) := max
πθ(·|s)

Es

[∑
s

πθ(a|s)R(s, a) + γ

∫ ∑
a

P (s′|s, a)πθ(a|s)V πt(s′)ds′
]

(23.1)

From this two questions arise: how do we sample s and how do we do optimization of the above objective
(23.1)?

23-1



23-2 Lecture 23: Policy Gradient and Actor Critic

23.2.1.1 How to Optimize the Objective

Using the handy log trick we can compute the gradient as an expectation:

∇ l(θ) = Es,a∼π

[
∇θ log π(a|s)

[
R(s, a) + γ

∫
P (s′|s, a)V πtds′

]]
= Es,a∼π[∇ log π(a|s)Qπt(s, a)]

Where we recognize the term in the nested brackets as the action value function evaluated at (s, a). So, in
the learning setting, we can estimate Qπt(s, a). How can we do this estimation? To answer this, recall the
Bellman equation for Q:

Qπ
ϕ(s, a) = R(s, a) + γ

∫
P (s′|s, a)π(a′|s′)Qπ

ϕ(s
′, a′)ds′da′

= R(s, a) + γEs′,a′

[
Qπ

ϕ(s
′, a′)

]

From this equation we can define an optimization problem that minimizes the norm of the difference between
the LHS and RHS:

min
ϕ

f(ϕ) := Es,a

[∥∥∥Qπ
ϕ(s, a)− (R(s, a) + γEs′,a′

[
Qπ

ϕ(s
′, a′)

]
)
∥∥∥2]

∇f(ϕ) = Es,a[(Q
π
ϕ(s, a)−R(s, a)− γEs′,a′ [Qπ

ϕ(s
′, a′)])(∇Qπ

ϕ(s, a)− Es′,a′ [∇Qπ
ϕ(s

′, a′)])]

Note that we run into the doubling sampling issue. In order to estimate the gradient of this objective, it is
apparent that we will need to run trajectories of states and actions twice as seen by the two expectation over
(s′, a′) in the gradient. In practice, this is computationally inefficient as we often have no way of rewinding
the environment to resample the state action pair.

In order to solve the double sampling issue we propose the following alternative objective:

min
ϕ

max
h

Es,a[∥Qπ
ϕ(s, a)− (R(s, a) + γQπ

ϕ(s, a))∥2]− Es,a,s′,a′ [∥h(s, a)− γQπ
ϕ(s

′, a′)∥2]

We claim that the minimizer of the new objective is equivalent to that of f(ϕ). To see this first note that
the optimal function h∗ can be found by taking the gradient of the second expectation in function space.

Es,a,s′,a′ [2(h(s, a)− γQπ
ϕ(s

′, a′))] = 0

This is solved by setting h∗(s, a) = γEs′,a′|s,a[Q
π
ϕ(s

′, a′)]. Now let us return to the expression for f(ϕ):



Lecture 23: Policy Gradient and Actor Critic 23-3

f(ϕ) = Es,a

[∥∥∥Qπ
ϕ(s, a)− (R(s, a) + γEs′,a′

[
Qπ

ϕ(s
′, a′)

]
)
∥∥∥2] (23.2)

= Es,a

[∥∥∥ (Qπ
ϕ(s, a)− (R(s, a) + γQπ

ϕ(s
′, a′)))︸ ︷︷ ︸

a

− (γEs′,a′ [Qπ
ϕ(s

′, a′)]− γQπ
ϕ(s

′, a′))︸ ︷︷ ︸
b

∥∥∥2] (23.3)

= Es,a[∥a∥2−∥b∥2] (23.4)

From here it is straightforward to see that the objective is equivalent to the minimax objective defined above.

23.2.1.2 Sampling s

We return to the question of sampling s. This is necessary because we intend to approximate expectations
over s in the above equations with Monte Carlo simulation. In this problem, it is sufficient to sample from
the stationary distribution of the environment:

dπ(s) =

∫
π(Pπ(s′|s))µ0(s)ds′

Here µ0(s) is the distribution of the initial state, often defined by user. Note that a peculiar complication
arises: in the optimization over the parameters above we rely on an estimate of the action value function
which depends on the current policy πt. Upon taking a single gradient step in θ, the policy changes by some
amount ∆π. As a result, if we solve the full optimization problem (i.e. take many steps of the gradient)
our policy may change quite considerably and as a result our gradient estimate which depends on πt will
become less and less accurate. So in essence, at each gradient step, the gradient estimate gets worse and our
resulting estimate of the new policy diverges. To prevent this from happening, we opt not to solve the full
optimization problem but instead only take one step in the gradient direction before moving to update the
action value function. The resulting two step loop resembles the actor-critic update:

Algorithm 2

Require: initial policy π1

1: for k = 1, . . . , T do
2: θk+1 = θk + ηk Es,a∼π(·|s)[∇ log π(a|s)Qπk(s, a)] (actor update)

3: Update Qϕk+1 (critic update)
4: end for
5: return πT


