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2.1 Recap

1. optimization

2. convex optimization

(a) local optimum are also global optimum

(b) the standard form for an optimization problem is defined as:

min f(x)

x ∈ Ω

s.t. g(x) ≥ 0

(2.1)

2.2 New Content

2.2.1 Convex Sets

We say a set is convex if the line segment between any two points x and y ∈ Ω lies within Ω for any 0 ≤ t ≤ 1:

x

y

t = 0.25
t = 0.6

Ω

Convex set

x, y ∈ Ω

t ∈ [0, 1]

tx+ (1− t)y ∈ Ω

(2.2)
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Example - l2 convex ball

l2 - Ball where B(r) ⊆ Rd, such that the magnitude of any vector x is less than r. formally: {x : ||x||2≤ r}:
Then any two points x, y within the convex set of B can be defined as

t ∈ [0, 1]

x ∈ B(r)

y ∈ B(r)

||tx+ (1− t)y||2≤ r

||tx||2+(1− t)||y||2≤ r

(2.3)

Example - Halfspace in d = 2

{Ax+ b ≤ 0} ∈ Rd (2.4)

x

y

Example - simplex in d = 3

∆ = {P : P ≥ 0,

d∑
i=1

Pi = 1} (2.5)
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Operations which preserve convexity

1. Intersection
Ω = Ω1 ∩ Ω2 (2.6)

Ω1 Ω2Ω

Figure 2.2: Intersection of two convex sets (cir-
cles). The intersection is also convex.

2. Affine (i.e. Translate, Rotate, Scale, Shear, Mirror)

C = AΩ+ b

= {Ax+ b, x ∈ Ω}
(2.7)

Any time you have a convex set and apply a linear operation to the set, the result remains a convex
set

3. Linear Fraction

C =
{
f(x) =

ATx+ b

Cx+ c0
, x ∈ Ω

}
s.t. Cx+ c0 > 0

A ∈ Rd×p, x ∈ Rd, b ∈ Rp×1

Ax+ b ∈ Rp×1

C ∈ R, c0 ∈ R

(2.8)
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Operations which DO NOT preserve convexity

1. Union
Ω = Ω1 ∪ Ω2 (2.9)

Ω

x /∈ Ω

Figure 2.3: Union of two convex sets (circles).
The union is not necessarily convex as shown in
red

2.2.2 Convex Functions

Definition (Zeroth Order)

Given a domain Ω ∈ Rd, a function f is convex if and only if ∀x, y ∈ Ω,

(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (2.10)
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Theorem: First Order Condition

Given a domain Ω ∈ Rd, a function f is convex if and only if ∀x, y ∈ Ω,

f(x) ≥ f(y) +∇f(y)T (x− y) (2.11)

where ∇f is the gradient of f

Proof

if (⇒)
suppose

x0 = λx+ (1− λ)y (2.12)

and we have {
f(x) ≥ f(x0) +∇f(x0)

T (x− x0)

f(y) ≥ f(x0) +∇f(x0)
T (y − x0)

(2.13)

then summing the two equations in (2.13) and multiplying by (1− λ):

λf(x) + (1− λ)f(y) ≥
�����������:f(x0)

λf(x0) + (1− λ)f(x0) +

������������������:0

∇f(x0)
T (λ(x− x0) + (1− λ)(y − x0)) (2.14)

Then we’re left with:
f(x0) ≤ λf(x) + (1− λ)f(y) (2.15)

only if (⇐)
Dividing the equation from (2.10) we have:

f((1− t)y + tx)

t
≤ f(x)− f(y) +

f(y)

t
(2.16)

which reduces to:

f(x) ≥ f(y) +
f((1− t)y + tx)− f(y)

t
(2.17)

as we take the limit as t approaches 0, this becomes:

f(x) ≥ f(y) +∇f(y)T (x− y) (2.18)

□

Theorem: Second Order Condition

Given a domain Ω ∈ Rd, a function f is convex if and only if ∀x ∈ Ω,

∇2f(x) ≥ 0
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or ∀h, x ∈ Ω

hT∇2f(x)h ≥ 0

where ∇2f is the hessian of f

Proof

if (⇒)
We know by definition that any matrix xTAx is positive semi-definite, then:

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇2f(z)h︸ ︷︷ ︸

≥0

(2.19)

then by definition:
f(x+ h) ≥ f(x) + hT∇f(x) (2.20)

End of Lecture


