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5.1 Recap

In the previous class, we discussed the following topics:

• Convex sets (examples and convex operations)

• Convex functions (conditions, Jensen’s inequality, 1st and 2nd conditions, operational convexity)

These concepts help us recognize and solve convex optimization problems.

5.2 New Content

5.2.1 Gradient Descent

We will focus on unconstrained optimization for this lecture. Consider the following optimization problem:

min
x∈Ω

f(x)

where f(x) is the objective function and Ω is the domain.

Algorithm: Gradient Descent

Input: Initial point x0.
For t = 1, 2, 3, . . . :

xt+1 = xt − η∇f(xt)

where η is the learning rate, and the gradient ∇f(x) must be differentiable.

5.2.2 Assumptions and Definitions

Assumption: f(x) is convex and L-smooth.
Definition: L-smoothness implies:

||∇f(x)−∇f(y)||≤ L||x− y||,∀x, y
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5.2.3 Proposition (L-Smoothness Properties)

Given that f(x) is convex and L-smooth, the following properties hold:

(a) f(x) is convex and L-smooth ⇒ (b)

(b) 0 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L
2 ||x− y||2⇒ (c)

(c) f(y) ≥ f(x) +∇f(x)T (y − x) + 1
2L ||∇f(x)−∇f(y)||2⇒ (d)

(d) (∇f(x)−∇f(y))T (x− y) ≥ 1
L ||∇f(x)−∇f(y)||2⇒ (a)

5.2.3.1 Observation 1

Gradient descent update rule for step t

xt+1 = xt − η∇f(xt)

The quadratic approximation of f(x) around xt gives

xt+1 = min
x

f(xt) +∇f(xt)
T (x− xt) +

1

2η
||x− xt||2

Setting the gradient of the quadratic approximation to 0 to find the update

∇L(x) = ∇f(xt) +
1

η
(x− xt) = 0

Simplifying this gives the final update rule, similar to the first equation

xt+1 = xt − η∇f(xt)

5.2.3.2 Observation 2

We begin by evaluating the change in the objective function f after updating from xt to xt+1:

f(xt+1)− f(xt) ≤ ∇f(xt)
T (−η∇f(xt)) +

L

2
||−η∇f(xt)||2

Here, we use the first-order approximation of f(x) at xt and include L to bound the second-order term.

Using statement (b) from above, we simplify the gradient and norm terms and get:

f(xt+1)− f(xt) ≤ −η||∇f(xt)||2+
Lη2

2
||∇f(x)||2

This expression shows that the function value decreases proportionally to η||∇f(xt)||2, but there’s a correc-
tion term involving the Lipschitz constant and the step size squared.

Now, factoring terms and combining them gives:
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f(xt+1)− f(xt) ≤ −η(1− Lη

2
)||∇f(xt)||2

Finally, if we set η = 1
L , the term 1− Lη = 0, leading to:

(η =
1

L
⇒ 1− Lη = 0)

5.2.3.3 Observation 3

We begin by introducing a bound on the distance between xt+1 and the optimal solution x∗:

||xt+1 − x∗||≤ ||xt − x∗||

This inequality suggests that the distance between the updated point xt+1 and the optimal solution is no
greater than the distance between the current point xt and x∗.

Next, squaring both sides:

||xt+1 − x∗||2≤ ||xt −
1

2
∇f(xt)− x∗||2

Here, we subtract the gradient term ∇f(xt), scaled by 1
2 , from xt, capturing how the function behaves after

taking a gradient step.

Expanding the terms on the right-hand side:

||xt+1 − x∗||2≤ ||xt − x∗||2+
1

L2
||∇f(xt)||2−

2

L
∇f(xt)

T (xt − x∗)

The expression now includes three terms: the squared distance between xt and x∗, a correction based on
the squared norm of the gradient, and a term involving the inner product of the gradient and the distance
between xt and x∗.

Given the condition:

∇f(xt) = 0, ∇f(x)T (x− xt) ≥
1

L
||x− x∗||2

This condition ensures that the gradient at xt vanishes at the optimal point x∗, and it gives a lower bound
on the inner product of the gradient with the difference between x and xt.

Finally, we conclude:

||xt+1 − x∗||2≤ − 2

L
· 1
L
||xt − x∗||2≤ ||xt − x∗||2

This shows that the distance to the optimal point x∗ decreases with each step, given that the gradient is
well-behaved and the step size is chosen appropriately.



5-4 Lecture 5: Optimization: Gradient Descent and Density Parametrization I

5.2.3.4 Observation 4

||∇f(xt)||2≥
(f(xt)− f(x∗))

||xt − x∗||

We bound the function difference using the gradient and the distance from the optimal solution:

f(xt)− f(x∗) ≤ ∇f(xt)
T (xt − x∗) ≤ ||∇f(xt)||||xt − x∗||

Using Observation 2, we get:

f(xt)− f(x∗) ≤
1

2
||∇f(xt)||2

This allows us to bound the function difference in terms of the gradient:

f(xt)− f(x∗) ≤ − 1

2L

[
(f(xt)− f(x∗))

||(xt − x∗)||

]2

f(xt)− f(x∗) ≤ − 1

2L

[
(f(xt)− f(x∗))

||(x0 − x∗)||

]2
Now, we define the difference between consecutive function values:

f(xt+1)− f(xt) = ϵt+1, (f(xt)− f(x∗)) = ϵt

Introducing β:

β =
1

2L
· 1

||x0 − x∗||2

We then establish the following relationship:

(ϵt+1 − ϵt)

ϵt+1 · ϵt
≤ −βϵ2t

ϵt+1 · ϵt

Which leads to the inequality:

⇒ 1

ϵt
− 1

ϵt+1
≤ β · ϵt

ϵt+1
≤ −β

⇒ 1

ϵt
+ β ≤ 1

ϵt+1

1

ϵt
≥ 1

ϵt−1

⇒ 1

ϵt−1
+ β
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1

ϵ0
+ βt ≤

1

ϵt
⇒ βt ≤

1

ϵt

⇒ βt ≤
1

f(xt)− f(x∗)

5.2.3.5 Theorem 1:

We begin with a bound on the function value at iteration t:

f(xt)− f(x∗) ≤
1

βt

This inequality gives us an upper bound on the difference between the function value at iteration t and the
optimal function value, in terms of βt.

Next, we define the gradient of the function as the average gradient over n samples:

∇f(x) =
1

n

n∑
i=1

fi(x)

We can sample R terms from the n samples:

*Sample R from n:*

∇f(x) =
1

R

R∑
j=1

∇fj(x)

This approximation reduces the computational cost by estimating the gradient using only a subset R of the
full sample set.

5.2.4 Density Parameterization:

We start by introducing the base measure function, denoted as:

h(x) → base measure

The base measure h(x) represents a fundamental component of the density function that helps in parame-
terizing the distribution.

Next, we introduce the sufficient statistic, which is crucial for describing the data:

T (x) → sufficient statistician partition function

Here, T (x) represents the sufficient statistic, and it’s used in conjunction with the partition function to
express the density. The partition function normalizes the distribution and is key in probability calculations.
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5.2.4.1 Exponential Family:

The probability density function of the exponential family is given by:

p(x) = h(x) exp(wTT (x)−A(w))

In this expression: - h(x) is the base measure (as discussed before). - T (x) is the sufficient statistic. - w is
the parameter of the distribution. - A(w) is the log-partition function, which normalizes the distribution.

The log-partition function is defined as:

A(w) = log

∫
exp(wTT (x)) dx

This function ensures that the distribution integrates to 1, which is a necessary property for any probability
density function.

Now, let’s check the normalization condition:

∫
p(x) dx =

∫
h(x) exp(wTT (x)) ∗ exp(−A(w)) dx

This step shows that the density integrates to 1 by using the log-partition function A(w) to cancel out terms.

We can factorize the expression as:

∫
p(x) dx = [

∫
h(x) exp(wTT (x) dx)] exp(A(w))

Finally, since the integral of the probability density must equal 1:

∫
p(x) dx = 1


