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6.1 Recap

• Convex Optimization is a solver for Machine Learning

• Density Parametrization is a modeler for Machine Learning

• In the previous class we proved convergence of gradient descent and stochastic gradient descent by
showing f(xt)− f(x∗) ∼ O( 1t )

• The Exponential Family

– P (x) = h(x) exp (ηTT (x)−A(η)) given P (x) ≥ 0,
∫
p(x) = 1

– A(η) = log
∫
h(x) exp (ηTT (x))d(x) given P (x) ≥ 0,

∫
p(x) = 1

∗ η: natural parameter

∗ T (x): sufficient statistic of the data

∗ h(x): carrier function

∗ A(η): log-partition function (cumulant function)

6.2 Recap

• The Exponential Family:

– Canonical form:

P (x) = h(x) exp
(
ηTT (x)−A(η)

)
given that P (x) ≥ 0 and

∫
p(x)dx = 1.

– Log-partition function:

A(η) = log

∫
h(x) exp

(
ηTT (x)

)
dx

∗ η: Natural parameter.

∗ T (x): Sufficient statistic of the data.

∗ h(x): Carrier function.

∗ A(η): Log-partition function (or cumulant function).
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6.3 New Content

6.3.1 Motivation

In machine learning, we can categorize problems into two main types:

• Supervised learning:

– Regression (e.g., modeling with Gaussian distributions).

– Classification (e.g., modeling with Bernoulli distributions).

• Unsupervised learning:

– Generative modeling (e.g., modeling the distribution of data).

6.3.2 Examples of Machine Learning Distributions

6.3.2.1 Gaussian Distribution (for Regression)

In the case of regression, we model the conditional distribution of y given x as a Gaussian:

y|x, ω ∼ N(ωTx, σ2)

The probability density function (pdf) is given by:

P (y|x, ω) = 1√
2πσ2

exp

(
− (y − ωTx)2

2σ2

)

To find the Maximum Likelihood Estimate (MLE), we minimize the sum of squared errors:

MLE = min
ω

n∑
i=1

∥yi − ωTxi∥2

6.3.2.2 Bernoulli Distribution (for Classification)

In binary classification, we model the outcome y ∈ {0, 1} using the Bernoulli distribution:

y|x, ω ∼ Bernoulli(p)

where p is modeled by the sigmoid function:

p = sigmoid(ωTx) =
1

1 + exp(−ωTx)

The probability mass function (pmf) is:

P (y|p) = py(1− p)1−y
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6.3.3 Exponential Family Examples

The following examples will illustrate how to verify if a function is of the exponential family. The main
method to do this is rewriting the function in the canonical form described above.

6.3.3.1 Showing Bernoulli is in Exponential Family

We can express the Bernoulli distribution in exponential family form. Starting with the Bernoulli pmf:

p(x) = πx(1− π)1−x where π ∈ [0, 1]

We can rewrite it as:

p(x) = exp (x log π + (1− x) log(1− π))

Simplifying further:

p(x) = exp

(
x log

(
π

1− π

)
+ log(1− π)

)
In this case:

T (x) = x, η = log

(
π

1− π

)
, h(x) = 1

Thus, the natural parameter η is related to the probability π via:

exp(η) =
π

1− π
, π =

1

1 + exp(−ωTx)

6.3.3.2 Showing Gaussian is in Exponential Family

Similarly, the Gaussian distribution can also be expressed in exponential family form. Starting with the
Gaussian pdf:

p(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
We rewrite this as:

p(x) = exp

(
log

(
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)))
= exp

(
− (x− µ)2

2σ2
− log(

√
2πσ2)

)
= exp

(
−x2 − 2xµ+ µ2

2σ2
− log

√
2πσ2

)
In this case:

T (x) = [x2, x], η =

[
− 1

2σ2
,
µ

σ2

]
, h(x) = 1

And the log-partition function is:

A(η) = − µ2

2σ2
− log

√
2πσ2
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6.3.4 Properties of the Log-Partition Function A(η)

The log-partition function A(η) has several important properties:

1. Convexity of A(η):
A(tη1 + (1− t)η2) ≤ tA(η1) + (1− t)A(η2)

This convexity is a key property for optimization, ensuring that the function has no local minima.

2. Gradient of A(η): The gradient of A(η) with respect to η is the expected value of the sufficient
statistics T (x) under the distribution:

dA(η)

dη
=

1

Q(η)

∂Q(η)

∂η
(6.1)

=

∫
h(x) exp(ηTT (x))∫
h(x) exp(ηTT (x))dx

T (x)dx (6.2)

=

∫
p(x)T (x)dx (6.3)

= EPη(x)[T (x)] (6.4)

6.3.5 Log-Likelihood and MLE in the Exponential Family

In the exponential family, the likelihood function Pθ(x) is given by:

Pθ(x) = exp(fθ(x)−A(θ))

where fθ(x) is the function of the data and θ represents the model parameters.

The log-likelihood for a dataset x1, x2, . . . , xn is:

L(θ) =

n∑
i=1

logPθ(xi) =

n∑
i=1

[fθ(xi)−A(θ)]

The gradient of the log-likelihood with respect to θ is:

dL(θ)

dθ
=

n∑
i=1

∂fθ(xi)

∂θ
− nEPθ(x)

[
∂fθ(x)

∂θ

]
This shows the balance between the observed data and the expected value of the sufficient statistics under
the model.

Additionally, the second derivative (Hessian) of A(θ) provides information about the variance of the sufficient
statistics:

∂2A(θ)

∂2θ
= (EPθ(x)[T

2(x)])− EPθ(x)[T (x)]
2 = cov(T (x))

This non-negative second derivative ensures the convexity of A(θ) and supports the optimization of the
log-likelihood.
Another note from this is that the kth derivative of the partition function is the kth moment of the partition
function.


