CSE6243: Advanced Machine Learning Fall 2024 Lecture 6: Density Parametrization II Lecturer: Bo Dai Scribes: Yilun Zhou, Aditya Chandaliya

Note: LaTeX template courtesy of UC Berkeley EECS Department.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Recap

- Convex Optimization is a solver for Machine Learning
- Density Parametrization is a modeler for Machine Learning
- In the previous class we proved convergence of gradient descent and stochastic gradient descent by showing $f(x_t) - f(x_*) \sim O(\frac{1}{t})$
- The Exponential Family

$$
- P(x) = h(x) \exp(\eta^T T(x) - A(\eta))
$$
 given $P(x) \ge 0$, $\int p(x) = 1$

- $-A(\eta) = \log \int h(x) \exp (\eta^T T(x)) d(x)$ given $P(x) \ge 0$, $\int p(x) = 1$
	- ∗ η: natural parameter
	- \ast T(x): sufficient statistic of the data
	- \star h(x): carrier function
	- \ast A(η): log-partition function (cumulant function)

6.2 Recap

- The Exponential Family:
	- Canonical form:

$$
P(x) = h(x) \exp \left(\eta^T T(x) - A(\eta) \right)
$$

given that $P(x) \geq 0$ and $\int p(x)dx = 1$.

– Log-partition function:

$$
A(\eta) = \log \int h(x) \exp (\eta^T T(x)) dx
$$

- ∗ η: Natural parameter.
- \ast T(x): Sufficient statistic of the data.
- $\star h(x)$: Carrier function.
- \ast A(η): Log-partition function (or cumulant function).

6.3 New Content

6.3.1 Motivation

In machine learning, we can categorize problems into two main types:

• Supervised learning:

- Regression (e.g., modeling with Gaussian distributions).
- Classification (e.g., modeling with Bernoulli distributions).

• Unsupervised learning:

– Generative modeling (e.g., modeling the distribution of data).

6.3.2 Examples of Machine Learning Distributions

6.3.2.1 Gaussian Distribution (for Regression)

In the case of regression, we model the conditional distribution of y given x as a Gaussian:

$$
y|x, \omega \sim N(\omega^T x, \sigma^2)
$$

The probability density function (pdf) is given by:

$$
P(y|x,\omega) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\omega^T x)^2}{2\sigma^2}\right)
$$

To find the Maximum Likelihood Estimate (MLE), we minimize the sum of squared errors:

$$
MLE = \min_{\omega} \sum_{i=1}^{n} ||y_i - \omega^T x_i||^2
$$

6.3.2.2 Bernoulli Distribution (for Classification)

In binary classification, we model the outcome $y \in \{0,1\}$ using the Bernoulli distribution:

$$
y|x, \omega \sim \text{Bernoulli}(p)
$$

where p is modeled by the sigmoid function:

$$
p = \text{sigmoid}(\omega^T x) = \frac{1}{1 + \exp(-\omega^T x)}
$$

The probability mass function (pmf) is:

$$
P(y|p) = p^y (1-p)^{1-y}
$$

6.3.3 Exponential Family Examples

The following examples will illustrate how to verify if a function is of the exponential family. The main method to do this is rewriting the function in the canonical form described above.

6.3.3.1 Showing Bernoulli is in Exponential Family

We can express the Bernoulli distribution in exponential family form. Starting with the Bernoulli pmf:

$$
p(x) = \pi^x (1 - \pi)^{1 - x}
$$
 where $\pi \in [0, 1]$

We can rewrite it as:

$$
p(x) = \exp(x \log \pi + (1 - x) \log(1 - \pi))
$$

Simplifying further:

$$
p(x) = \exp\left(x \log\left(\frac{\pi}{1-\pi}\right) + \log(1-\pi)\right)
$$

In this case:

$$
T(x) = x, \quad \eta = \log\left(\frac{\pi}{1-\pi}\right), \quad h(x) = 1
$$

Thus, the natural parameter η is related to the probability π via:

$$
\exp(\eta) = \frac{\pi}{1 - \pi}, \quad \pi = \frac{1}{1 + \exp(-\omega^T x)}
$$

6.3.3.2 Showing Gaussian is in Exponential Family

Similarly, the Gaussian distribution can also be expressed in exponential family form. Starting with the Gaussian pdf:

$$
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

We rewrite this as:

$$
p(x) = exp\left(log\left(\frac{1}{\sqrt{2\pi\sigma^2}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\right)\right)
$$

$$
= exp\left(-\frac{(x-\mu)^2}{2\sigma^2} - log(\sqrt{2\pi\sigma^2})\right)
$$

$$
= exp\left(-\frac{x^2 - 2x\mu + \mu^2}{2\sigma^2} - log\sqrt{2\pi\sigma^2}\right)
$$

In this case:

$$
T(x) = [x^2, x], \quad \eta = \left[-\frac{1}{2\sigma^2}, \frac{\mu}{\sigma^2} \right], \quad h(x) = 1
$$

And the log-partition function is:

$$
A(\eta) = -\frac{\mu^2}{2\sigma^2} - \log \sqrt{2\pi\sigma^2}
$$

6.3.4 Properties of the Log-Partition Function $A(\eta)$

The log-partition function $A(\eta)$ has several important properties:

1. Convexity of $A(\eta)$:

 $A(t\eta_1 + (1-t)\eta_2) \leq tA(\eta_1) + (1-t)A(\eta_2)$

This convexity is a key property for optimization, ensuring that the function has no local minima.

2. Gradient of $A(\eta)$: The gradient of $A(\eta)$ with respect to η is the expected value of the sufficient statistics $T(x)$ under the distribution:

$$
\frac{dA(\eta)}{d\eta} = \frac{1}{Q(\eta)} \frac{\partial Q(\eta)}{\partial \eta} \tag{6.1}
$$

$$
= \int \frac{h(x) \exp(\eta^T T(x))}{\int h(x) \exp(\eta^T T(x)) dx} T(x) dx
$$
\n(6.2)

$$
=\int p(x)T(x)dx
$$
\n(6.3)

$$
= \mathbb{E}_{P_{\eta}(x)}[T(x)] \tag{6.4}
$$

6.3.5 Log-Likelihood and MLE in the Exponential Family

In the exponential family, the likelihood function $P_{\theta}(x)$ is given by:

$$
P_{\theta}(x) = \exp(f_{\theta}(x) - A(\theta))
$$

where $f_{\theta}(x)$ is the function of the data and θ represents the model parameters.

The log-likelihood for a dataset x_1, x_2, \ldots, x_n is:

$$
L(\theta) = \sum_{i=1}^{n} \log P_{\theta}(x_i) = \sum_{i=1}^{n} [f_{\theta}(x_i) - A(\theta)]
$$

The gradient of the log-likelihood with respect to θ is:

$$
\frac{dL(\theta)}{d\theta} = \sum_{i=1}^{n} \frac{\partial f_{\theta}(x_i)}{\partial \theta} - n \mathbb{E}_{P_{\theta}(x)} \left[\frac{\partial f_{\theta}(x)}{\partial \theta} \right]
$$

This shows the balance between the observed data and the expected value of the sufficient statistics under the model.

Additionally, the second derivative (Hessian) of $A(\theta)$ provides information about the variance of the sufficient statistics:

$$
\frac{\partial^2 A(\theta)}{\partial^2 \theta} = (\mathbb{E}_{P_{\theta}(x)}[T^2(x)]) - \mathbb{E}_{P_{\theta}(x)}[T(x)]^2 = cov(T(x))
$$

This non-negative second derivative ensures the convexity of $A(\theta)$ and supports the optimization of the log-likelihood.

Another note from this is that the kth derivative of the partition function is the kth moment of the partition function.