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8.1 Recap

• Frequentist Learning vs. Bayesian Learning

• Motivation for Sampling

• Types of Sampling: Inverse Probability Trasnformation, Acceptance-Rejection Sampling

• Recapped how to find best q(x) (Arbitrary distribution to sample from)

Proof:

Best q(x) → argmin
q

V ar[Eq[
p(x)

q(x)
f(x)]]

= argmin
q

V ar[
1

n

n∑
i=1

f(xi)
p(xi)

q(xi)
]

= argmin
q

1

n
(Eq[

n∑
i=1

f2(xi)
p2(xi)

q2(xi)
]− (Eq[f(x)

p(x)

q(x)
])2)

The first expectation term can be rewritten as: q
argmin

∫
f2(x)p

2(x)
q2(x) and the second expectation term can be

rewritten as Ep[f(x)], which is constant in q and thus removed from the optimization. Then by applying the
Cauchy–Schwarz inequality we can rewrite it as∫

f2(x)
p2(x)

q2(x)
dx ∗

∫
q(x)dx ≥ (

∫
f(x)p(x)dx)2

(
∫
q(x)dx = 1 because it is a probability distribution)

q(x) =
f(x)p(x)∫
f(x)p(x)dx
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8.2 New Content

8.2.1 Motivation

The problem with Acceptance and Rejection Sampling is that q(x) needs to meet certain conditions which
is restrictive and sometimes difficult.

8.2.2 MCMC Sampling

Psuedocode for MCMC sampling:

Sample x_0 ~ q(x) \\

for t = 1....

x_t ~ T(x|x_{t - 1})

(This is known as a Markovian process because the current sample only depends on the previous sample).

As t goes to infinity the sample converges to the target distribution x∞ ∼ P (x).

We can write this condition mathematically as

P (x) = lim
t→∞

∫
t

Π
t=1

T (xi|xi−1q(x0))d{xi}ti=1 (8.1)

Designing T so that it converges to the target distribution p(x)

Thm1.

{
P (x′) =

∫
T (x′|x)p(x)dx

T (x′|x) has only one unique stationary distribution

Theorem 1 is a sufficient condition to check equation 8.1

Thm2.

{
P (x′)T (x′|x) = P (x)T (x′|x)
Irreducable (∀x, yT (x|y), T (y|x) ≥ 0) and a-periodic (pt(x|x) ̸= 0∀t)

Thm2. is a sufficient condition to check for thm1.
Proof to show Detailed balance (Thm2.) is sufficient to prove stationary distirbution (thm1.)

Proof: ∫
T (x′|x)p(x)dx

=

∫
T (x|x′)p(x′)dx

= p(x′)

∫
T (x|x′)dx

= p(x′) ∗ 1
p(x′) = p(x′)

The pros of MCMC sampling is that our choice of q(x) is less restricted but the cons are that the sampled
data generates is dependent.
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8.2.3 MH - Metropolis-Hasting Algorithm

The MH algorithm is one such MCMC method. In the case of the MH algorithm, T (·|xt−1) is as follows:{
i) y ∼ P̃ (·|xt−1)

ii) µ ∼ U [0, 1]

Accept sample if µ ≤ A(x, y) := min(1, P (y)P̃ (x|y)
P (x)P̃ (y|x) )

Proof to check if MH algorithms satisfies Thm2.

Proof: First Condition:

p(x)T (y|x) = p(x)A(x, y)p̃(y|x) = p(x)p̃(y|x) ∗min(1,
p(y)p̃(x|y)
p(x)p̃(y|x)

)

= min(p(x)p̃(y|x), p(y)p̃(x|y)) = p(y)p̃(x|y) ∗min(
p(x)p̃(y|x)
p(y)p̃(x|y)

, 1) = p(y)T (x|y)

Proving the second condition is tedious, so it was not covered in class.

8.2.4 Hit and Run Algorithm

Hit and Run algorithm is a modification on the MH operator, it samples y from a normal distribution
centered around the previous sample.

y ∼ P̃ (·|xt−1) ∝ exp(
||x− xt−1||2

2σ2
)

Example 1. Given P (x) ∝ exp(||x||2). How do we calculate A(x, y)?

= min(1,
P (y)P̃ (x|y)
P (x)P̃ (y|x)

)

= exp(−||y||2+||x||2)
(note: y = x+ ϵ)

= exp(||x||2−||x+ ϵ||2)
= exp(ϵ2 − 2xT ϵ)

As we can see, when ϵ is small there is a high chance to accept the sample whereas if it is large there is a
high chance to reject sample.

8.2.5 Gibbs Sampling

Gibbs sampling is another MCMC algorithm.
Given x ∈ Rd

xt ∼ T (·|xt−1)

(Find permutation of d)
Repeat d times to obtain xt:

yi ∼ P (xi|x−i)
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Unlike the previous algorithms, we accept every sample. A((xi, x−i), xt−1) = 1

Proof:

A(x, y) = min(1,
p(y)p̃(x|y)
p(x)p̃(y|x)

)

Let z = p(y)p̃(x|y)
p(x)p̃(y|x) . Also, define x = {x1, x−1} and y = {y1, x−1}. Then,

p(y) = p(x−1)p(y1|x−1)

p(x) = p(x−1)p(x1|x−1)

p̃(x|y) = p̃(x1|x−1)

p̃(y|x) = p̃(y1|x−1)

z =
p(x−1) ∗ p(y1|x−1) ∗ p̃(x1|x−1)

p(x−1) ∗ p(x1|x−1) ∗ p̃(y1|x−1)
= 1

Thus, A(x, y) = min(1, 1) = 1


