

CX 4240 Spring 2025

Linear Algebra Revisit

Bo Dai
School of CSE, Georgia Tech
bodai@cc.gatech.edu

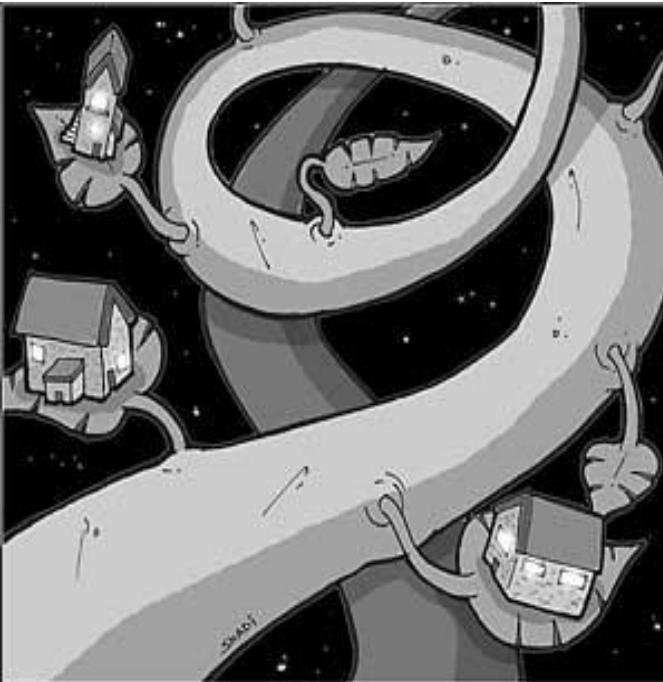
Basic / Prerequisites

- Probability
 - Distributions, densities, marginalization, conditioning
- Statistics
 - Mean, variance, maximum likelihood estimation
- Linear Algebra and Optimization
 - Vector, matrix, multiplication, inversion, eigen-value decomposition
- Coding Skills
 - Pytorch and/or JAX

Motivational Example: Machine Learning for Apartment Hunting

- Suppose you are to move to Atlanta
- And you want to find the **most reasonably priced** apartment satisfying your **needs**:

$$\text{monthly rent} = \theta_1(\text{living area}) + \theta_2(\#\text{ bedroom})$$



Living area (ft ²)	# bedroom	Monthly rent (\$)
230	1	900
506	2	1800
433	2	1500
190	1	800
...		
150	1	?
270	1.5	?

Linear Regression Model

- Assume y is a linear function of x (features) plus noise ϵ

monthly rent = $\theta_1(\text{living area}) + \theta_2(\#\text{ bedroom})$

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_n x_n + \epsilon$$

where ϵ is an error model as Gaussian $N(0, \sigma^2)$

Probability

Linear Regression Model

- Assume y is a linear function of x (features) plus noise ϵ

monthly rent = $\theta_1(\text{living area}) + \theta_2(\#\text{ bedroom})$

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_n x_n + \epsilon$$

where ϵ is an error model as Gaussian $N(0, \sigma^2)$

Probability

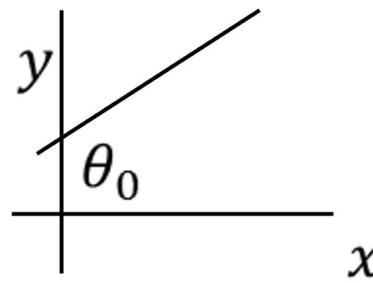
- Let $\theta = (\theta_0, \theta_1, \dots, \theta_n)^T$, and augment data by one dimension

Linear algebra

$$x \leftarrow (1, x)^T$$

Then $y = \theta^T x + \epsilon$

Linear algebra



Probabilistic Interpretation of Least Mean Square

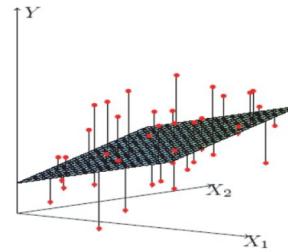
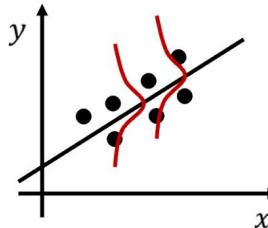
- Assume y is a linear in x plus noise ϵ

$$y = \theta^T x + \epsilon$$

Linear algebra

- Assume ϵ follows a Gaussian $N(0, \sigma)$

$$p(y^i | x^i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^i - \theta^T x^i)^2}{2\sigma^2}\right)$$



Probabilistic Interpretation

- Hence the log-likelihood is:

$$\log L(\theta) = m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_i^m (y^i - \theta^\top x^i)^2$$

- Least Mean Square (LMS)

Statistics

$$LMS: \frac{1}{m} \sum_i^m (y^i - \theta^\top x^i)^2$$

- How to make it work in real data?

Algorithms
Programming

Matrix version of the gradient

- Define $X = (x^1, x^2, \dots, x^m)$, $y = (y^1, y^2, \dots, y^m)^\top$, gradient becomes

Linear algebra
$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} Xy + \frac{2}{m} XX^\top \theta$$

Linear algebra
$$\Rightarrow \hat{\theta} = (XX^\top)^{-1} Xy$$

Algorithms
Programming

- Matrix inversion in $\hat{\theta} = (XX^\top)^{-1} Xy$ **expensive** to compute

- Gradient descent

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{\alpha}{m} \sum_i^m (y^i - \hat{\theta}^{t\top} x^i) x^i$$

Optimization

Usage in Modern ML

- Model Design
 - Convolution Operation
 - Attention Design in Transformer
 - etc
- PyTorch or JAX Implementation
 - Matrix Ops for Acceleration

Revisit of Linear Algebra

- Basics
- Dot and Vector Products
- Identity, Diagonal and Orthogonal Matrices
- Trace
- Norms
- Inverse of a matrix
- Eigenvalues and Eigenvectors
- Singular Value Decomposition
- Matrix Calculus (Optional)

Linear Algebra Basics - I

- Linear algebra provides a way of compactly representing and operating on sets of linear equations

Linear Regression Model

- Assume y is a linear function of x (features) plus noise ϵ

monthly rent = $\theta_1(\text{living area}) + \theta_2(\#\text{ bedroom})$

$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_n x_n + \epsilon$$

where ϵ is an error model as Gaussian $N(0, \sigma^2)$

Probability

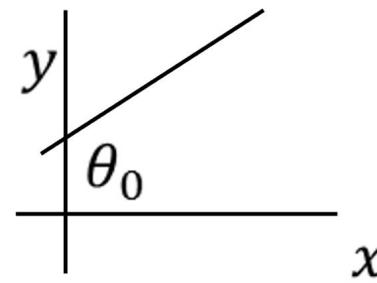
- Let $\theta = (\theta_0, \theta_1, \dots, \theta_n)^T$, and augment data by one dimension

Linear algebra

$$x \leftarrow (1, x)^T$$

Then $y = \theta^T x + \epsilon$

Linear algebra



Linear Algebra Basics - I

- Linear algebra provides a way of compactly representing and operating on sets of linear equations

$$4x_1 - 5x_2 = -13 \quad - 2x_1 + 3x_2 = 9$$

can be written in the form of

$$A = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix} \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix} \quad Ax = b$$

- $A \in \mathbb{R}^{m \times n}$ denotes a matrix with m rows and n columns, where elements belong to real numbers.
- $x \in \mathbb{R}^n$ denotes a vector with n real entries. By convention an n dimensional vector is often thought as a matrix with n rows and 1 column.

Linear Algebra Basics - II

- Transpose of a matrix results from flipping the rows and columns. Given $A \in \mathbb{R}^{m \times n}$, transpose is $A^T \in \mathbb{R}^{n \times m}$
- For each element of the matrix, the transpose can be written as $A^T_{ij} = A_{ji}$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Linear Algebra Basics - II

- Transpose of a matrix results from flipping the rows and columns. Given $A \in \mathbb{R}^{m \times n}$, transpose is $A^T \in \mathbb{R}^{n \times m}$
- For each element of the matrix, the transpose can be written as $A^T_{ij} = A_{ji}$
- The following properties of the transposes are easily verified

$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$(A + B)^T = A^T + B^T$$

Linear Algebra Basics - II

- Transpose of a matrix results from flipping the rows and columns. Given $A \in \mathbb{R}^{m \times n}$, transpose is $A^T \in \mathbb{R}^{n \times m}$
- For each element of the matrix, the transpose can be written as $A^T_{ij} = A_{ji}$
- The following properties of the transposes are easily verified

$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$(A + B)^T = A^T + B^T$$

- A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$ and it is anti-symmetric if $A = -A^T$. Thus each matrix can be written as a sum of symmetric and anti-symmetric matrices.

$$C = \frac{1}{2}(C + C^T) + \frac{1}{2}(C - C^T)$$

Vector and Matrix Multiplication - I

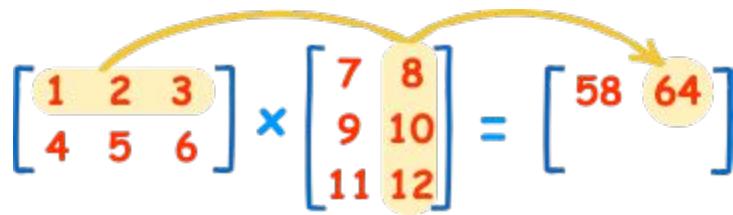
- The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is given by $C \in \mathbb{R}^{m \times p}$, where $C_{ij} = \sum_{k=1}^n A_{ik}B_{kj}$

"Dot Product"

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 \end{bmatrix}$$

Vector and Matrix Multiplication - I

- The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is given by $C \in \mathbb{R}^{m \times p}$, where $C_{ij} = \sum_{k=1}^n A_{ik}B_{kj}$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \end{bmatrix}$$


Vector and Matrix Multiplication - I

- The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is given by $C \in \mathbb{R}^{m \times p}$, where $C_{ij} = \sum_{k=1}^n A_{ik}B_{kj}$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ 139 & 154 \end{bmatrix} \checkmark$$

Vector and Matrix Multiplication - I

- Given two vectors $x, y \in \mathbb{R}^n$, the term $x^T y$ (also $x \cdot y$) is called the *inner product* or *dot product* of the vectors, and is a real number given by $\sum_{i=1}^n x_i y_i$. For example,

$$x^T y = [x_1 \quad x_2 \quad x_3] \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \sum_{i=1}^3 x_i y_i$$

Vector and Matrix Multiplication - III

- Given two vectors $x \in \mathbb{R}^n, y \in \mathbb{R}^m$, the term xy^\top is called the **outer product** of the vectors, and is a matrix given by $(x_i y_j)^\top = x_i y_j$. For example,

$$xy^\top = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} [y_1 \quad y_2 \quad y_3] = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix}$$

Norms - I

- Norm of a vector $\|x\|$ is informally a measure of the "length" of a vector
- More formally, a norm is any function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ that satisfies
 - For all $x \in \mathbb{R}^n, f(x) \geq 0$ (non-negativity)
 - $f(x) = 0$ if and only if $x = 0$ (definiteness)
 - For $x \in \mathbb{R}^n, t \in \mathbb{R}, f(tx) = |t|f(x)$ (homogeneity)
 - For all $x, y \in \mathbb{R}^n, f(x + y) \leq f(x) + f(y)$ (triangle inequality)

Norms - III

- Common norms used in machine learning are

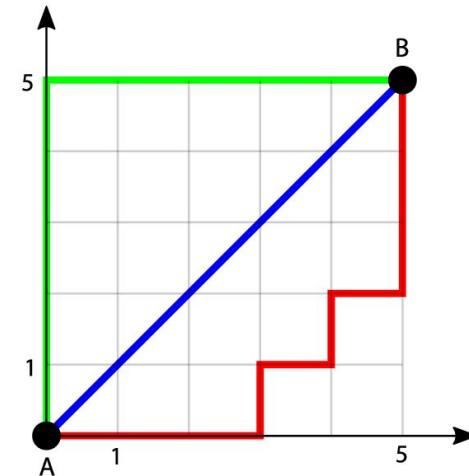
- ℓ_2 norm: $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$
- ℓ_∞ norm: $\|x\|_\infty = \max_i |x_i|$

- All norms presented so far are examples of the family of ℓ_p norms, which are parameterized by a real number $p \geq 1$:

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{\frac{1}{p}}$$

- Norms can be defined for matrices, such as the Frobenius norm.

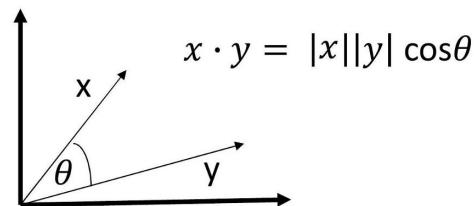
$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2}$$



Norm Revisit

$$x^T y = [x_1 \ x_2 \ x_3] \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \sum_{i=1}^3 x_i y_i$$

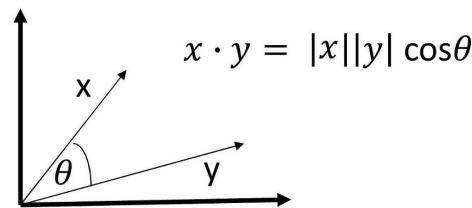
- The dot product also has a geometrical interpretation, for vectors in $x, y \in \mathbb{R}^2$ with angle θ between them



Norm Revisit

$$x^T y = [x_1 \ x_2 \ x_3] \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \sum_{i=1}^3 x_i y_i$$

- The dot product also has a geometrical interpretation, for vectors in $x, y \in \mathbb{R}^2$ with angle θ between them



which leads to use of dot product for testing orthogonality, getting the Euclidean norm of a vector, and scalar projections.

Trace of a Matrix

- The trace of a matrix $A \in \mathbb{R}^{n \times n}$, denoted as $\text{tr}(A)$, is the sum of the diagonal elements in the matrix

$$\text{tr}(A) = \sum_{i=1}^n A_{ii}$$

Trace of a Matrix

- The trace of a matrix $A \in \mathbb{R}^{n \times n}$, denoted as $\text{tr}(A)$, is the sum of the diagonal elements in the matrix

$$\text{tr}(A) = \sum_{i=1}^n A_{ii}$$

- The trace has the following properties
 - For $A \in \mathbb{R}^{n \times n}$, $\text{tr}(A) = \text{tr}A^\top$
 - For $A, B \in \mathbb{R}^{n \times n}$, $\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)$
 - For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, $\text{tr}(tA) = t \cdot \text{tr}(A)$
 - For A, B, C such that ABC is a square matrix $\text{tr}(ABC) = \text{tr}(BCA) = \text{tr}(CAB)$

Trace of a Matrix

- The trace of a matrix $A \in \mathbb{R}^{n \times n}$, denoted as $\text{tr}(A)$, is the sum of the diagonal elements in the matrix

$$\text{tr}(A) = \sum_{i=1}^n A_{ii}$$

- The trace has the following properties
 - For $A \in \mathbb{R}^{n \times n}$, $\text{tr}(A) = \text{tr}A^\top$
 - For $A, B \in \mathbb{R}^{n \times n}$, $\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)$
 - For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, $\text{tr}(tA) = t \cdot \text{tr}(A)$
 - For A, B, C such that ABC is a square matrix $\text{tr}(ABC) = \text{tr}(BCA) = \text{tr}(CAB)$
- The trace of a matrix helps us easily compute norms and eigenvalues of matrices as we will see later

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\text{tr}(A^\top A)}$$

Identity Matrices

- The identity matrix, denoted by $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones on the diagonal and zeros everywhere else

$$I_1 = [1],$$

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

.....,

$$I_n = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Diagonal Matrices

- A diagonal matrix is matrix where all non-diagonal matrices are 0 . This is typically denoted as $D = \text{diag}(d_1, d_2, d_3, \dots, d_n)$

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & 0 & 0 \\ \vdots & 0 & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if $x^T y = 0$. A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized
- It follows from orthogonality and normality that
 - $U^T U = I = UU^T$
 - $\|Ux\|_2 = \|x\|_2$

Inverse of a Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} and is the unique matrix such that $A^{-1}A = I = AA^{-1}$

$$A \cdot A^{-1} = I$$
$$\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Education Portal

Inverse of a Matrix

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} and is the unique matrix such that $A^{-1}A = I = AA^{-1}$
- For some square matrices A^{-1} may not exist, and we say that A is **singular or non-invertible**. In order for A to have an inverse, A must be **full rank**.
- For non-square matrices the inverse, denoted by A^+ , is given by $A^+ = (A^T A)^{-1} A^T$ called the **pseudo inverse**

Determinant and Inverse of a Matrix

- The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function $f : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$, denoted by $|A|$ or $\det A$, and is calculated as

$$|A| = \sum_{i=1}^n (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}| \quad (\text{for any } j \in 1, 2, \dots, n)$$

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} and is the unique matrix such that $A^{-1}A = I = AA^{-1}$
- For some square matrices A^{-1} may not exist, and we say that A is **singular or non-invertible**. In order for A to have an inverse, A must be **full rank**.
- For non-square matrices the inverse, denoted by A^+ , is given by $A^+ = (A^T A)^{-1} A^T$ called the **pseudo inverse**

Linear Independence and Rank

- A set of vectors $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^m$ are said to be *(linearly) independent* if no vector can be represented as a linear combination of the remaining vectors. That is if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

- for some scalar values $\alpha_1, \alpha_2, \dots \in \mathbb{R}$ then we say that the vectors are *linearly dependent*; otherwise the vectors are linearly independent
- The *column rank* of a matrix $A \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns of A that constitute a linearly independent set. *Row rank* of a matrix is defined similarly for rows of a matrix.

Range and Null Space

- The span of a set of vectors $\{x_1, x_2, \dots, x_n\}$ is the set of all vectors that can be expressed as a linear combination of the set $\{v: v = \sum_{i=1}^n \alpha_i x_i, \alpha_i \in \mathbb{R}\}$
- If $\{x_1, x_2, \dots, x_n\} \in \mathbb{R}^n$ is a set of linearly independent set of vectors, then $\text{span}(\{x_1, x_2, \dots, x_n\}) = \mathbb{R}^n$
- The range of a matrix $A \in \mathbb{R}^{m \times n}$, denoted as $\mathcal{R}(A)$, is the span of the columns of A
- The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$, is the set of all vectors that equal 0 when multiplied by A
 - $\mathcal{N}(A) = \{x \in \mathbb{R}^n: Ax = 0\}$

Column and Row Space

- The row space and column space are the linear subspaces generated by row and column vectors of a matrix
- Linear subspace, is a vector space that is a subset of some other higher dimension vector space
- For a matrix $A \in \mathbb{R}^{m \times n}$
 - $\text{Col space}(A) = \text{span}(\text{columns of } A)$
 - $\text{Rank}(A) = \dim(\text{rowspace}(A)) = \dim(\text{colspace}(A))$

Eigenvalues and Eigenvectors - I

- Given a square matrix $A \in \mathbb{R}^{n \times n}$ we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^n$ is an eigenvector if

$$Ax = \lambda x, x \neq 0$$

Eigenvalues and Eigenvectors - I

- Given a square matrix $A \in \mathbb{R}^{n \times n}$ we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^n$ is an eigenvector if

$$Ax = \lambda x, x \neq 0$$

- Intuitively this means that upon multiplying the matrix A with a vector x , we get the same vector, but scaled by a parameter λ
- Geometrically, we are transforming the matrix A from its original orthonormal basis/co-ordinates to a new set of orthonormal basis x with magnitude as λ

Eigenvalues and Eigenvectors - II

- All the eigenvectors can be written together as $AX = X\Lambda$ where the diagonals of X are the eigenvectors of A , and Λ is a diagonal matrix whose elements are eigenvalues of A

Eigenvalues and Eigenvectors - II

- All the eigenvectors can be written together as $AX = X\Lambda$ where the diagonals of X are the eigenvectors of A , and Λ is a diagonal matrix whose elements are eigenvalues of A
- If the eigenvectors of A are invertible, then $A = X\Lambda X^{-1}$

Eigenvalues and Eigenvectors - II

- All the eigenvectors can be written together as $AX = X\Lambda$ where the diagonals of X are the eigenvectors of A , and Λ is a diagonal matrix whose elements are eigenvalues of A
- If the eigenvectors of A are invertible, then $A = X\Lambda X^{-1}$
- There are several properties of eigenvalues and eigenvectors
 - $\text{Tr}(A) = \sum_{i=1}^n \lambda_i$
 - $|A| = \prod_{i=1}^n \lambda_i$
 - Rank of A is the number of non-zero eigenvalues of A
 - If A is non-singular then $\frac{1}{\lambda_i}$ are the eigenvalues of A^{-1}
 - The eigenvalues of a diagonal matrix are the diagonal elements of the matrix itself!

Eigenvalues and Eigenvectors - III

- For a symmetric matrix A , it can be shown that eigenvalues are real and the eigenvectors are orthonormal. Thus it can be represented as $U\Lambda U^T$
- Considering quadratic form of A ,

$$x^T A x = x^T U \Lambda U^T x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2 \quad (\text{where } y = U^T x)$$

- Since y_i^2 is always positive the sign of the expression always depends on λ_i . If $\lambda_i > 0$ then the matrix A is positive definite, if $\lambda_i \geq 0$ then the matrix A is positive semidefinite
- For a multivariate Gaussian, the variances of x and y do not fully describe the distribution. The eigenvectors of this covariance matrix capture the directions of highest variance and eigenvalues the variance

Eigenvalues and Eigenvectors - III

- For a symmetric matrix A , it can be shown that eigenvalues are real and the eigenvectors are orthonormal. Thus it can be represented as $U\Lambda U^T$
- Considering quadratic form of A ,

$$x^T A x = x^T U \Lambda U^T x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2 \quad (\text{where } y = U^T x)$$

- Since y_i^2 is always positive the sign of the expression always depends on λ_i . If $\lambda_i > 0$ then the matrix A is positive definite, if $\lambda_i \geq 0$ then the matrix A is positive semidefinite

Eigenvalues and Eigenvectors - IV

- We can rewrite the original equation in the following manner

$$\begin{aligned} Ax &= \lambda x, x \neq 0 \\ \Rightarrow (\lambda I - A)x &= 0, x \neq 0 \end{aligned}$$

- This is only possible if $(\lambda I - A)$ is singular, that is $|\lambda I - A| = 0$.
- Thus, eigenvalues and eigenvectors can be computed.
 - Compute the determinant of $A - \lambda I$.
 - This results in a polynomial of degree n .
 - Find the roots of the polynomial by equating it to zero.
 - The n roots are the n eigenvalues of A . They make $A - \lambda I$ singular.
 - For each eigenvalue λ , solve $(A - \lambda I)x$ to find an eigenvector x

Singular Value Decomposition

- Singular value decomposition, known as SVD, is a factorization of a real matrix with applications in calculating pseudo-inverse, rank, solving linear equations, and many others.
- For a matrix $M \in \mathbb{R}^{m \times n}$ assume $n \leq m$
 - $M = U\Sigma V^T$ where $U \in \mathbb{R}^{m \times m}, V^T \in \mathbb{R}^{n \times n}, \Sigma \in \mathbb{R}^{m \times n}$
 - The m columns of U , and the n columns of V are called the left and right singular vectors of M . The diagonal elements of Σ, Σ_{ii} are known as the singular values of M .
 - Let v be the i^{th} column of V , and u be the i^{th} column of U , and σ be the i^{th} diagonal element of Σ

$$Mv = \sigma u \text{ and } M^T u = \sigma v$$

Singular Value Decomposition - II

$$\bullet M = [u_1 \ u_2 \ \dots \ u_n] \begin{bmatrix} \Sigma_{11} & \dots & \Sigma_{1n} \\ \vdots & \ddots & \vdots \\ \Sigma_{n1} & \dots & \Sigma_{nn} \end{bmatrix} [v_1 \ v_2 \ \dots \ v_n]^\top$$

principal directions

Scaling factor

Projection in principal directions

- Singular value decomposition is related to eigenvalue decomposition

- Then covariance matrix is $C = \frac{1}{m} XX^\top$
- Starting from singular vector pair
 - $M^\top u = \sigma v$
 $\Rightarrow MM^\top u = \sigma M v$
 $\Rightarrow MM^\top u = \sigma^2 u$
 $\Rightarrow Cu = \lambda u$

Matrix Calculus

- For a vector $x, b \in \mathbb{R}^n$, let $f(x) = b^T x$, then $\nabla_x b^T x$ is equal to b
 - $\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$
- Now for a quadratic function, $f(x) = x^T A x$, with $A \in \mathbb{S}^n$, $\frac{\partial f(x)}{\partial x_k} = 2Ax$
 - $$\begin{aligned} \frac{\partial f(x)}{\partial x_k} &= \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j \\ &= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k \\ &= 2 \sum_{i=1}^n A_{ki} x_i \end{aligned}$$
- Let $f(X) = X^{-1}$, then $\partial(X^{-1}) = -X^{-1}(\partial X)X^{-1}$

References for self study

Resources for review of material

- [Linear Algebra Review and Reference by Zico Kotler](#)
- [Matrix Cookbook by KB Peterson](#)

Back to Apartment Hunting

- Given m data points, find θ that minimizes the mean square error

$$\hat{\theta} = \operatorname{argmin}_{\theta} L(\theta) = \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

Optimization

Statistics

- Set gradient to 0 and find parameter

Optimization

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^i = 0$$

Linear algebra

$$\Leftrightarrow -\frac{2}{m} \sum_{i=1}^m y^i x^i + \frac{2}{m} \sum_{i=1}^m x^i x^{i\top} \theta = 0$$

Statistics

Statistics

Optimization for LMS

- Define $X = (x^1, x^2, \dots, x^m), y = (y^1, y^2, \dots, y^m)^\top$, gradient becomes

Linear algebra

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} Xy + \frac{2}{m} XX^\top \theta$$

Linear algebra

$$\Rightarrow \hat{\theta} = (XX^\top)^{-1}Xy$$

Algorithms Programming

- Matrix inversion in $\hat{\theta} = (XX^\top)^{-1}Xy$ **expensive** to compute

- Gradient descent

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{\alpha}{m} \sum_i^m (y^i - \hat{\theta}^{t\top} x^i) x^i$$

Optimization

Registration

- Friday is the registration deadline.
- If you decide to drop the course, please do so ASAP so that other people on the waitlist have time to register!
- See you next week!

Q&A