ccccccccccc

College of Computing

CX 4240 Spring 2025
Linear Algebra Revisit

Bo Dai
School of CSE, Georgia Tech
bodai@cc.gatech.edu



https://bo-dai.github.io/CX4240-spring2026/
mailto:bodai@cc.gatech.edu

Basic / Prerequisites

Probability

e Distributions, densities, marginalization, conditioning

Statistics
e Mean, variance, maximum likelihood estimation

Linear Algebra and Optimization

* Vector, matrix, multiplication, inversion, eigen-value decomposition
Coding Skills

e Pytorch and/or JAX



Motivational Example:
Machine Learning for Apartment Hunting

e Suppose you are to move to Atlanta

e And you want to find the most
reasonably priced apartment

satisfying your needs:
monthly rent = 6, (living area) + 05(# bedroom)

Living area (ft?)

# bedroom

Monthly rent ($)

230

1

900

506

1800

433

2

1500

190

1

800

150

270




Linear Regression Model

» Assume y is a linear function of x (features) plus noise €
monthly rent = 0 (living area) + 65(# bedroom)

y =0y +60:x;1++0,x, +€

where € is an error model as Gaussian N(0,52) €|

Probability




Linear Regression Model

o Assume y is a linear function of x (features) plus noise €
monthly rent = 6 (living area) + 65(# bedroom)

y =0y +60:x;1++0,x, +€

where ¢ is an error model as Gaussian N (0, 02) €|

Probability

o Let 8 = (6,04, ...,0,,)7, and augment data by one

dimension

Linear algebra

x < (1,x)7

Theny =0Tx+¢ \

Linear algebra

e

%o




Probabilistic Interpretation of Least Mean Square

» Assume y is a linear in x plus noise € v
y =0Tx+e€ r\

Linear algebra

» Assume ¢ follows a Gaussian N (0, g)

. 1 (y' - HTxi)z)
Ll4-L. — —_
PO10) = Fom ex‘”( 202




Probabilistic Interpretation

» Hence the log-likelihood is:

m
1 1 : <2
— _ L _ Tl
log L(6) —mlog\/z_na 52 E (yt —67x!)
l

AN

Statistics

/

m
1 : .y
. L _ gT,1
LMS: —Ei(y 6T xt)

* Least Mean Square (LMS)

» How to make it work in real data? | Algorithms
Programming




Matrix version of the gradient
o Definex = (x%,x2,..2x™),y = (¥4, 5% ..,y™T7, gradient becomes

Linear L dL(0) 2 2 o
algebra 39 m Ayt _XX'0
. Algorithms
Linear =0 =XX)"Xy Programming

algebra . ) /

» Matrix inversion in = (XX")7'Xy expensive to compute

o Gradient descent

ft+1  ft 4 _z etT '
\ Optimization




Usage in Modern ML

e Model Design
o Convolution Operation
o  Attention Design in Transformer
o etc
e PyTorch or JAX Implementation

o Matrix Ops for Acceleration



Revisit of Linear Algebra

Basics

Dot and Vector Products

ldentity, Diagonal and Orthogonal Matrices
Trace

Norms

Inverse of a matrix

Eigenvalues and Eigenvectors

Singular Value Decomposition

Matrix Calculus (Optional)



Linear Algebra Basics - |

e Linear algebra provides a way of compactly representing and operating
on sets of linear equations



Linear Regression Model

o Assume y is a linear function of x (features) plus noise €
monthly rent = 6 (living area) + 65(# bedroom)

y =0y +60:x;1++0,x, +€

where ¢ is an error model as Gaussian N (0, 02) €|

Probability

o Let 8 = (6,04, ...,0,,)7, and augment data by one

dimension

Linear algebra

x < (1,x)7

Theny =0Tx+¢ \

Linear algebra

e

%o




Linear Algebra Basics - |

e Linear algebra provides a way of compactly representing and operating
on sets of linear equations
4x, — 5x, = —13 —2x,+3x,=9
can be written in the form of

A= o= acm

e A € R™™ denotes a matrix with m rows and n columns, where elements
belong to real numbers.

e x € R™ denotes a vector with n real entries. By convention an n
dimensional vector is often thought as a matrix with n rows and 1 column.



Linear Algebra Basics - |l

e Transpose of a matrix results from flipping the rows and columns. Given
A € R™*" transpose is AT € R™*™

e For each element of the matrix, the transpose can be written as AT ;; = 4j;

A

or W =
o AN




Linear Algebra Basics - |l

e Transpose of a matrix results from flipping the rows and columns. Given
A € R™*" transpose is AT € R™*™

e For each element of the matrix, the transpose can be written as AT ;; = 4j;
e The following properties of the transposes are easily verified

(AT)T =4

(AB)T = BTAT

(A+B)T =A" +BT



Linear Algebra Basics - |l

Transpose of a matrix results from flipping the rows and columns. Given
A € R™*" transpose is AT € R™*™

For each element of the matrix, the transpose can be written as A" ;; = Aj;

The following properties of the transposes are easily verified

(AT)T =4

(AB)T = BTAT

(A+B)T =A" +BT

A square matrix A € R™" is symmetric if A = AT and it is anti-symmetric if

A = —AT". Thus each matrix can be written as a sum of symmetric and anti-
symmetric matrices. O 1(0 +CT + 1(0 ola
2 2



Vector and Matrix Multiplication - |

e The product of two matrices A € R™*™ and B € R™*P is given by C €
]RmXp, Where CU = Z}:=1AikBkj

[;;1],([31%}:[58 ]

11 12



Vector and Matrix Multiplication - |

e The product of two matrices A € R™*™ and B € R™*P is given by C €
]RmXp, Where Cl] = Z}:=1AikBkj

(520 m| = [ ]

11 12



Vector and Matrix Multiplication - |

e The product of two matrices A € R™*™ and B € R™*P is given by C €
]RmXp, Where CU = Z}:=1AikBkj

1 237 |7 5] _[58 64
4 5 6 9 10| = |139 154

11 12



Vector and Matrix Multiplication - |

e Given two vectors x,y € R?, the term x "y (also x - v ) is called the inner
product or dot product of the vectors, and is a real number given by
r1x;y;. For example,

Y1 2
xTy=[x1 X2 x3]|¥2| = Z X; Vi
Y3 i=1



Vector and Matrix Multiplication - Il

e Given two vectors x € R,y € R™, the term xyT is called the outer

product of the vectors, and is a matrix given by (xl-yj)T = x;y;. For

example,
X1 X1Y1 X1Y2 X1)Y3
xyT = |%2[[V1 Y2 Y3]=|[X2V1 X222 X2)3
X3 X3Y1 X3Y2 X3Y3




Norms - |

e Norm of a vector ||x]|| is informally a measure of the "length" of a vector
e More formally, a norm is any function f: R™ — R that satisfies

= Forallx € R, f(x) = 0 (hon-negativity)

= f(x) =0isandonlyif x = 0 (definiteness)

» Forx e R%,t €N, f(tx) = |t|f(x) (homogeneity)

» Forallx,y e R%, f(x+y) < f(x)+ f(y) (triangle inequality)



Norms - |l|

e Common norms used in machine learning are

= £, norm: |[x]|; = ,/ . xlz

" fynom: x|l = Xty |xl

= f, norm: ||x|| = max;|x;| A .

e All norms presented so far are examples of the family of £,, norms, which are
parameterized by a real number p > 1:

1
lxllp, = iy |x;: P)?

e Norms can be defined for matrices, such as the Frobenius norm.

4]l = JZ?;12?=1A%j



Norm Revisit

Y1 3
xTy=[X1 X2 X3]|Y2|= Z X; Vi
Y3 i=1

e The dot product also has a geometrical interpretation, for vectors in x,y €

R? with angle 6 between them
x -y = |x||y| cos®

A5




Norm Revisit

Y1 3
xTy=[X1 X2 X3]|Y2|= Z X; Vi
Y3 i=1

e The dot product also has a geometrical interpretation, for vectors in x,y €

R? with angle 6 between them 4
x -y = |x||y| cos®

A5

which leads to use of dot product for testing orthogonality, getting the Euclidean

norm of a vector, and scalar projections.



Trace of a Matrix

e The trace of a matrix A € R™*", denoted as tr(4), is the sum of the diagonal
elements in the matrix

tr(A) = ?=1 Aii



Trace of a Matrix

e The trace of a matrix A € R™*", denoted as tr(4), is the sum of the diagonal
elements in the matrix

tr(4) = Xi=, Au
e The trace has the following properties
= ForAd € R™" tr(4) =trd"
» ForA,B € R tr(A+ B) = tr(4) + tr(B)
» ForAe R te R, tr(td) =t - tr(4)

= For A, B, C such that ABC is a square matrix tr(ABC) = tr(BCA) =
tr(CAB)



Trace of a Matrix

The trace of a matrix A € R™", denoted as tr(4), is the sum of the diagonal
elements in the matrix

tr(4) = Xitq Ay
The trace has the following properties
= ForAd € R™" tr(4) =trd"
» ForA,B € R tr(A+ B) = tr(4) + tr(B)
» ForAe R te R, tr(td) =t - tr(4)

= For A, B, C such that ABC is a square matrix tr(ABC) = tr(BCA) =
tr(CAB)

The trace of a matrix helps us easily compute norms and eigenvalues of

1Al = Jz:z127=1A%j = Ju@A)

matrices as we will see later



ldentity Matrices

e The identity matrix, denoted by I € R™" is a square matrix with ones on the
diagonal and zeros everywhere else

II=[1]=
1 0
I, = !
-_01}
1 0 0
I.=|0 1 0f,
0 0 1
1 0 0 0 0]
01 00 0
I =0 01 00O
0 000 01




Diagonal Matrices

e A diagonal matrix is matrix where all non-diagonal matrices are 0 . This is
typically denoted as D = diag(d,, d,, ds, ..., d,,)

d1 0 0O

O d, 0 O
D= 0 5

O O d




Orthogonal Matrices

e Two vectors x,y € R™ are orthogonal if xTy = 0. A square matrix U € R™" is
orthogonal if all its columns are orthogonal to each other and are normalized

e |t follows from orthogonality and normality that
= UTU=1=0UT
= |lUx]lz = lIxll2



Inverse of a Matrix

e The inverse of a square matrix A € R™" is denoted A~ and is the unique
matrix such that A71A =1 = AA™?




Inverse of a Matrix

The inverse of a square matrix A € R™" is denoted A™! and is the unique
matrix such that A71A =1 = AA™?!

For some square matrices A~ may not exist, and we say that 4 is singular or
non-invertible. In order for A to have an inverse, A must be full rank.

For non-square matrices the inverse, denoted by A*,is given by A* =
(ATA)™1 AT called the pseudo inverse



Determinant and Inverse of a Matrix

The determinant of a square matrix A € R™" is a function f : R™" — R,
denoted by |A| or det A, and is calculated as

|A| — ?=1 (—1)l+]al]|A\l,\]| (fOr anyj (S 1,2, ...,Tl)
The inverse of a square matrix A € R™" is denoted A™1 and is the unique

matrix such that A714A =1 = AA™1

For some square matrices A~ may not exist, and we say that A is singular or
non-invertible. In order for A to have an inverse, A must be full rank.

For non-square matrices the inverse, denoted by A*,is given by A* =
(ATA)™1 AT called the pseudo inverse



Linear Independence and Rank

e A set of vectors {x;, x5, ..., x,} € R™ are said to be (linearly) independent if
no vector can be represented as a linear combination of the remaining
vectors. That is if

_ yn-1
Xn = Nici QX
e for some scalar values a;, @,, ... € R then we say that the vectors are linearly
dependent; otherwise the vectors are linearly independent

e The column rank of a matrix A € R™*" is the size of the largest subset of

columns of A that constitute a linearly independent set. Row rank of a matrix
is defined similarly for rows of a matrix.



Range and Null Space

The span of a set of vectors {x;, x5, ..., X, } is the set of all vectors that can be
expressed as a linear combination of the set {v:v = Y- a;x;, a; € R}

If {x1, %5, ..., x,} € R™ is a set of linearly independent set of vectors, then
span({xq, x5, ..., x,}) = R"

The range of a matrix A € R™", denoted as R(A), is the span of the columns
of A

The nullspace of a matrix A € R™*", denoted NV'(4), is the set of all vectors
that equal O when multiplied by A

= N(A) ={x€eR":Ax = 0}



Column and Row Space

e The row space and column space are the linear subspaces generated by row
and column vectors of a matrix

e Linear subspace, is a vector space that is a subset of some other higher
dimension vector space

e Foramatrix A € R™*"
» (ol space (A) = span(columns ofA)
» Rank(4) = dim(rowspace(A)) = dim(colspace(A))



Eigenvalues and Eigenvectors - |

e Given a square matrix A € R™" we say that A € C is an eigenvalue of A and
x € C™ is an eigenvector if

Ax =Ax,x # 0



Eigenvalues and Eigenvectors - |

e Given a square matrix A € R™" we say that 4 € C is an eigenvalue of A and
x € C" is an eigenvector if

Ax =Ax,x # 0
e Intuitively this means that upon multiplying the matrix A with a vector x , we
get the same vector, but scaled by a parameter 1

o Geometrically, we are transforming the matrix A from its original orthonormal
basis/co-ordinates to a new set of orthonormal basis x with magnitude as 2



Eigenvalues and Eigenvectors - |l

e All the eigenvectors can be written together as AX = XA where the diagonals
of X are the eigenvectors of 4, and A is a diagonal matrix whose elements are
eigenvalues of 4



Eigenvalues and Eigenvectors - |

e All the eigenvectors can be written together as AX = XA where the diagonals

of X are the eigenvectors of 4, and A is a diagonal matrix whose elements are
eigenvalues of 4

e If the eigenvectors of A are invertible, then A = XAX ™1



Eigenvalues and Eigenvectors - |

e All the eigenvectors can be written together as AX = XA where the diagonals
of X are the eigenvectors of 4, and A is a diagonal matrix whose elements are
eigenvalues of 4

e If the eigenvectors of A are invertible, then A = XAX ™1

e There are several properties of eigenvalues and eigenvectors
= Tr(4) = ¥is A
= Al =Tz A
= Rank of 4 is the number of non-zero eigenvalues of A

1

= |f Ais non-singular then P
L

are the eigenvalues of A™1

= The eigenvalues of a diagonal matrix are the diagonal elements of the
matrix itself!



Eigenvalues and Eigenvectors - Il

e For a symmetric matrix A, it can be shown that eigenvalues are real and the
eigenvectors are orthonormal. Thus it can be represented as UAU T

e Considering quadratic form of A,

xTAx =xTUANUTx =yTAy =", 4;y% (wherey=UTx)

e Since y;? is always positive the sign of the expression always depends on A;. If
A; > 0 then the matrix A is positive definite, if ; = 0 then the matrix A is
positive semidefinite

e For a multivariate Gaussian, the variances of x and y do not fully describe the
distribution. The eigenvectors of this covariance matrix capture the directions
of highest variance and eigenvalues the variance



Eigenvalues and Eigenvectors - Il

For a symmetric matrix A, it can be shown that eigenvalues are real and the
eigenvectors are orthonormal. Thus it can be represented as UAU T

Considering quadratic form of A,
xTAx =xTUANUTx =yTAy =Y, 4;y? (wherey=UTx)

Since y# is always positive the sign of the expression always depends on A;. If
A; > 0 then the matrix A is positive definite, if ; = 0 then the matrix A is

positive semidefinite



Eigenvalues and Eigenvectors - IV

e We can rewrite the original equation in the following manner

Ax = Ax,x # 0
> A —A)x=0,x+#0

e Thisis only possible if (AI — A) is singular, that is |AI — A| = 0.
e Thus, eigenvalues and eigenvectors can be computed.
= Compute the determinant of A — Al.
e This results in a polynomial of degree n.
» Find the roots of the polynomial by equating it to zero.
e The nroots are the n eigenvalues of A. They make A — Al singular.

= For each eigenvalue 4, solve (A — Al)x to find an eigenvector x



Singular Value Decomposition

e Singular value decomposition, known as SVD, is a factorization of a real matrix

with applications in calculating pseudo-inverse, rank, solving linear equations,
and many others.

e Foramatrix M € R™™ gssumen < m
» M=UXVT where U € R™™M T € R**" ¥ € RM*"

= The m columns of U, and the n columns of V are called the left and

right singular vectors of M. The diagonal elements of X, X;; are known
as the singular values of M.

» |etvbethei! column of V, and u be the ith column of U, and ¢ be
the ith diagonal element of X

Mv =ocuand MTu = ov



Singular Value Decomposition - |l

[y e YT
Xy o Ly
o M == [ul uz “es un] *, E [vl vz aes ’Vn]T
_~\\ Y A\ Zmn STS~—_
principal directions Projection in
Scaling factor principal directions

e Singular value decomposition is related to eigenvalue decomposition

i .. 1
» Then covariance matrix is C = ;XXT

» Starting from singular vector pair

e Mu=ov
= MMTu = cMv
= MMTu = ¢?%u
= Cu = Au



Matrix Calculus

e Foravectorx,b € R", let f(x) =b"x, thenV,bTx is equal to b

of(x) _ 0
oxy - oxy

n s
i=1bix; = by

e Now for a quadratic function, f(x) = xTAx, with A € S, a;:ic) = 2Ax

6f(x)= 3} n
= oxk dx), <=1

= Dizk AieXi + Xjzx ArjXj + 2AxX
= 2201 Ari%i

n
i=1 AijXiX;

o letf(X)=X"1 theno(X 1) =—-X"1(0Xx)X1?



References for self study

Resources for review of material

- Linear Algebra Review and Reference by Zico Kotler
- Matrix Cookbook by KB Peterson



https://www.cs.cmu.edu/~zkolter/course/15-884/linalg-review.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Back to Apartment Hunting
» Given m data points, find 6 that minimizes the mean square error

~ 1 . .
0 = argming L(6) = EZ(y‘ - BTx‘)Z
g

i\
Optimization -
» Set gradient to 0 and find parameter Statistics
imizati dL(o
Optimization ( )= __Z(y —0Txi)xi = 0

_ «:——Zy"xi+—2x"x”9=0
Linear m & m &
algebra N N
Statistics Statistics




Optimization for LMS

o Definex = (x%,x2,..x™),y = (y4,5%..,y™T, gradient becomes

Linear dL(0) 2 2
algebra| > 38 = m XY +;XXT9
. Algorithms
Linear =0 =XX)"Xy Programming

algebra . ) /

» Matrix inversion in = (XX")7'Xy expensive to compute

o Gradient descent

ft+1  ft 4 _Z etT '
\ Optimization




Registration

e Friday is the registration deadline.

e If you decide to drop the course, please do so ASAP so that other people on
the waitlist have time to register!

e See you next week!



Q&A



