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Probability and Statistics Revisit

Bo Dai
School of CSE, Georgia Tech
bodai@cc.gatech.edu



https://bo-dai.github.io/CX4240-spring2026/
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Office Hours

Friday: 3:00-4:00pm, Online Session



https://teams.microsoft.com/l/meetup-join/19%3ameeting_NzViMmZjNGUtZGJhNS00OGYyLWFlYmItY2YyMThhNzZmNDBl%40thread.v2/0?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%224f6cd2ac-53df-4b00-9d76-e378aa26842c%22%7d

Office Hours

Monday: 2:00-3:00pm, Coda 2nd floor: Changhao Li

Thursday: 3:00-4:00pm, Coda 2nd floor: Chenxiao Gao



Basic / Prerequisites

« Probability

e Distributions, densities, marginalization, conditioning
« Statistics

e Mean, variance, maximum likelihood estimation

« Linear Algebra and Optimization
e Vector, matrix, multiplication, inversion, eigen-value decomposition

« Coding Skills
e Pytorch and/or JAX
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Basic Probability Concepts

e Asample space S is the set of all possible outcomes of a conceptual or physical,
repeatable experiment. (S can be finite or infinite.)



Basic Probability Concepts

e Asample space S is the set of all possible outcomes of a conceptual or physical,
repeatable experiment. (S can be finite or infinite.)

= E.g., S may be the set of all possible outcomes of a dice roll: §
(1 2 3 4 5 6)



Basic Probability Concepts

e Asample space S is the set of all possible outcomes of a conceptual or physical,
repeatable experiment. (S can be finite or infinite.)

= E.g., S may be the set of all possible outcomes of a dice roll: §
(1 2 3 4 5 6)

= E.g., S may be the set of all possible nucleotides of a DNA site: S
A CG T

e An Event A is any subset of S

= Seeing "1" or "6" in a dice roll, observing a "G" at a site



Discrete Probability Distribution

e A probability distribution P defined on a discrete sample space S is an assignment of
a non-negative real number P(s) to each sample s € S :

* Probability Mass Function (PMF): p,(x;) = P[X = x;]
* Properties: p,(x;) =2 0and ¥;ipx(x;) =1
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Discrete Probability Distribution

e A probability distribution P defined on a discrete sample space § is an assignment of
a non-negative real number P(s) to each sample s € S :

* Probability Mass Function (PMF): p,(x;) = P[X = x;]
* Properties: p,(x;) =2 0and ¥;ipx(x;) =1
e Examples:

= Bernoulli Distribution:

= Binomial Distribution:

Pix =1 = (i) P —p)n



Continuous Probability Distribution

e A continuous random variable X is defined on a continuous sample space: an interval
on the real line, a region in a high dimensional space, etc. = to .
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=  Cumulative Distribution Function (CDF): E.(x) = P[X < x]

» Probability Density Function (PDF): E.(x) = [ Wwfx(X)dx or f(x) = M

» Properties: f,(x) = 0 and f ofx(X)dx =1

* Interpretation: f,(x) = [X € xx+d]



Continuous Probability Distribution

e Examples:

* Uniform Density Function:

1

<x<
fx(x)={b—a fora <x<b
0 otherwise
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Continuous Probability Distribution

e Examples:

* Uniform Density Function:

1

<x<
fx(x)={b—a fora<x<b
0 otherwise

* Exponential Density Function:
fo(@) =Ae r*  forx =0

Fo(z)=1-¢* forx>0



Continuous Probability Distribution

e Examples:

* Uniform Density Function:

1

<x<
£ () ={b—a forasx<b
0 otherwise

* Exponential Density Function:

»= Gaussian(Normal) Density Function

1
V2o

e

fx(x) =



Continuous Probability Distribution

e Gaussian Distribution:

= IfZ~N(01)
x 1 x  _g2
F(x)=®(x) = Jl fx(2)dz = EJ.- e 2 dz

e This has no closed form expression, but is built in most software packages.

e T o
T




Statistics

e Expectation: The mean value, center of mass, first moment:

Blg001 = | g@pa()dx
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Statistics

e Expectation: The mean value, center of mass, first moment:
Blg001 = | g@pa()dx

e N-th moment: g(x) = x™ MODE Vs  MEDIAN Vs  MEAN

e N-th central moment: g(x) = (x — )"

o Mean: Ex[X] = f:o xpy(x)dx /\ /JN /\

" Elax] = aElX] Rientiaiie. e v o
" Ela+X]=a+E[X]
e Variance(Second central moment): Var(x) = Ex[(X — Ex[X])?] = Ex[X?] — Ex[X]?
= Var(aX) = a?Var(X)
» Var(a+ X) =Var(X)



Central Limit Theorem

o |If (X1,X,,...X,) are i.i.d. continuous random variables, then the joint distribution is
f(X)
e CLT proves that f(X) is Gaussian with mean E[X;] and Var[X;]

)f=f(X1,X2,...,Xn)=i X asm— o



Central Limit Theorem

o |If (X1,X,,...X,) are i.i.d. continuous random variables, then the joint distribution is

fX)
e CLT proves that f(X) is Gaussian with mean E[X;] and Var[X;]

= 1
X=fX,X5..,X,) = ;Z}Ll X; asn — oo

e Somewhat of a justification for assuming Gaussian noise



Joint RVs and Marginal Densities

e Joint cumulative distribution:
x
Py =PX <o <syl=| [ fo(apdas

e Marginal densities:

o fx () = [ fry (. B)dp
" Px(xi)=2;Px.r(xi:}’j)



Joint RVs and Marginal Densities

e Joint cumulative distribution:
x
Py =PX <o <syl=| [ fo(apdas

e Marginal densities:

= fx@) = [ fry(x BYAB
» px(x) = ij}f.?(xi:yj)
e Expectation and Covariance:
= E[X+Y]=E[X]+E[Y]
* cov(X,Y) = E[(X — Ex[X]D(Y — Ey(Y)] = E[XY] — E[X]E[Y]
= Var(X+Y)=Var(X) + 2cov(X,Y) + Var(Y)



Conditional Probability

e P(X|Y) = Fraction of the worlds in which X is true given that Y is also true.
e Forexample:

= H = "Having a headache"

= F = "Coming down with flu"

» P(Headche| Flu) = fraction of flu-inflicted worlds in which you have a
headache. How to calculate?

e Definition:

P(X,Y) P(Y | X)P(X)
P(Y)  P()

P(X 1Y) =
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e Forexample:

= H = "Having a headache"

= F = "Coming down with flu"

» P(Headche| Flu) = fraction of flu-inflicted worlds in which you have a
headache. How to calculate?

e Definition:

P(X,Y) P(Y |X)P(X)
P(Y)  P®)

P(X 1Y) =

This is called Bayes Rule



Conditional Probability

e P(X|Y) = Fraction of the worlds in which X is true given that Y is also true.
e Forexample:

= H = "Having a headache"

= F = "Coming down with flu"

» P(Headche| Flu) = fraction of flu-inflicted worlds in which you have a
headache. How to calculate?

e Definition:

P(X,Y) P(Y |X)P(X)
P(Y)  P®)

P(X 1Y) =

P( Headache Flu) _ P(Flu| Headache)P( Headache)

P( Headache| Flu) = P(Fl) P(Flu)




Rules of Independence

e Recall that for events E and H , the probability of E given H , written as P(E | H), is

P(E,H)

P(E|H) = D)

e E and H are (statistically) independent if
P(E,H) = P(E)P(H)

e Or equivalently

P(E) = P(E | H)
That means, the probability of E is true doesn't depend on whether H is true or not



Rules of Independence

Recall that for events E and H , the probability of E given H , written as P(E | H), is

P(E,H)

P(E|H) = D)

e E and H are (statistically) independent if
P(E,H) = P(E)P(H)

e Or equivalently
P(E) = P(E | H)
That means, the probability of E is true doesn't depend on whether H is true or not
e E andF are conditionally independent given H if

P(E | H,F) = P(E | H)

o Or equivalently

P(E,F | H) = P(E | H)P(F | H)



Suppose random variables Y,z and ¢ are related by Y = 3, + 8,z + ¢, with 3, and 3, are
parameters and ¢ is assumed to independent of z and follow normal distribution with
mean 0 and constant variance. Please calculate: (1) E(e|z), and (2) E(Y|z).

Elelz] = Ele] =0



Suppose random variables Y,z and ¢ are related by Y = 3, + 8,z + ¢, with 3, and 3, are
parameters and ¢ is assumed to independent of z and follow normal distribution with
mean 0 and constant variance. Please calculate: (1) E(e|z), and (2) E(Y|z).

Elelz] = Ele] =0
E[Y|z] = E[Bo + B1z + €|z] = Bo + 1z + Ele|x] = Bo + pr1z

» E[X+Y]=E[X]+E[Y]



Multivariate Gaussian

p(x | p2) =

exp {—% (=5 - )

TS
S Ny

(Zﬂ:)n,r‘zlz'llfz

e Moment Parameterization u = E(X)

5 = Cov(X) = E[(X — )X — )]

P(X.Y)

0.15
5100
0

4

e Mahalanobis Distance 42 = (x = ) T2 (x — p)
e Tons of applications (MoG, FA, PPCA, Kalman filter,...)

(a)

(h) (c) (d)



Multivariate Gaussian
e Joint Gaussian P(Xy,X>)

=l =[5 5]

e Marginal Gaussian
Hz' = pp 23" = 2y
e Conditional Gaussian P(X; | X; = x;)

Haz =ty + 212255 (0 — )
Euz =211 — 212}:2-21521



Operations on Gaussian R.V.

e The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x
is distributed
E(AX +b) = AE(X) + b
Cov(AX + b) = ACov(X)AT
this means that for Gaussian distributed quantities:
X~N@wwZ)—>AX+b ~N(Au + b, AZAT)

¢ The sum of two independent Gaussian r.v. is a Gaussian

Y=X1 +X2,X1J.X2 —>Hy=,h'.1 +#2,z},=£1 +22

¢ The multiplication of two Gaussian functions is another Gaussian function (although
no longer normalized)
N(a, A)N(b, B) x N(c,C)
whereC = (A1 + B 1) YL, c=CA™'a+ CB~'b



Maximum Log-Likelihood Estimation (IMLE)

Given iid samples from Gaussian {z;}
1 (i — p)?
p(iﬂilﬁi, UE) = \/m €Xp (_ 202
Likelihood L, 0%) = ﬁ L o (— @iz
! 210 202




Maximum Log-Likelihood Estimation (IMLE)

Given iid samples from Gaussian {z;},

1 zi — p)°
p(iﬂilﬁi, UE) - \/m exp (_ ( 20.2 )

wie  maxf(u, o) =log L(u,0?)
1O

T

_n n 9 1 9
=—3 In(27) — 2 In(c?) — 552 ;(mz — 1)



Machine Learning for Apartment Hunting

e Suppose you are to move to Atlanta

e And you want to find the most
reasonably priced apartment satisfying

your needs:
monthly rent = 0, (living area) + 05(# bedroom)
Living area (ft?) |# bedroom Monthly rent (%)
230 1 900
506 2 1800
433 2 1500
190 1 800
150 1
270 1.5 ?




Gaussian Likelihood

» Assume y is a linear in x plus noise €
y =0"x+e€

» Assume € follows a Gaussian N (0, o)

. 1 (y* - BTx")E)
L L. —_— —
p(y |x ’ 9) N \ 2TTO EXP( 2072

» By independence assumption, likelihood

IS x
L(8)
m

o 1 \™ ( 1yt - HTx")z)
—_— L L. —_— —
- ljp(y x%6) —( F_Z'n:cr) exp 5=
=~ Probability







MLE

L(8) 2
m o 1 m Z:n [ _ 9T [
=[ [poi0) = (=) exp(— b — *) )

1 & . |
max log L(6) = ~ 252 E (y" — 0" 2%)? — mlog(V2mo)
i=1

Least Mean Square



Reference

® Chapter 2in Pattern Recognition and Machine Learning. Springer. 2006


https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Q&A
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