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Basic / Prerequisites

Probability

e Distributions, densities, marginalization, conditioning

Statistics
e Mean, variance, maximum likelihood estimation

Linear Algebra and Optimization

* Vector, matrix, multiplication, inversion, eigen-value decomposition
Coding Skills

e Pytorch and/or JAX



Machine Learning for Apartment Hunting

e Suppose you are to move to Atlanta
e Andyou want to find the most
reasonably priced apartment

satisfying your needs:

Living area (ft?)

# bedroom

Monthly rent ($)
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Linear Regression Model

e Assume y is a linear function of x (features) plus noise €
y=0¢g+0:ix1+-+0,x,+€
Probability

where € is an error model as Gaussian N(0, ¢2) <™

e LetB =(6,y,04,..,6,)7, and augment data by one dimension

\ x < (1,x)7

Linear algebra

Theny =0Tx+ ¢

\

Linear algebra




Gaussian Likelihood

e Assume y is a linear in x plus noise €

y=0"x+¢

e Assume € follows a Gaussian N (0, o)

(yi _ ngi)Z

p(y'1x56)=

e By independence assumption, likelihood is
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max log L(0) = 202 Z(y —0'z")? — mlog(V2mo)
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Optimization

Least Mean Square for Linear Regression




Optimization Problem

minimize f ()

e 0O € R%is the variable or decision variable

e f:R% - Ris the objective function

e goalisto choose 8 to minimize f
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Optimization Problem

minimize f ()

e 0O € R%is the variable or decision variable

e f:R% - Ris the objective function

e goalisto choose 8 to minimize f

max log L(0) =

— 022 —mlog(V2mo)
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meln —log L(6) = 2— — 0" 22 + mlog(V2ro)



Optimization Problem

minimize f ()

e 0O € R%is the variable or decision variable

e f:R% - Ris the objective function

e goalisto choose 8 to minimize f
e 0*isoptimal means that for all 8, f(8) = f(6%) 0" = argmgin f(6)
o f[*=f(0%)isthe optimal value of the problem f*= rrbin f(6)
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Random Search ?!

No guidance -> not effic




® optmal statonary point

20 ® non-optimal stationary point

Optimality Condition

a1 (8)

26, exist

e let'sassume that f is differentiable, i.e., partial derivatives ——

e if 6" is optimal, then Vf(6*) =0
e Vf(0) =0 is called the optimality condition for the problem
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26, exist

e let'sassume that f is differentiable, i.e., partial derivatives ——

e if 6" is optimal, then Vf(6*) =0 Necessary Conditions
e Vf(0) =0 is called the optimality condition for the problem
e there can be points that satisfy Vf(6) = 0 but are not optimal
e we call points that satisfy Vf(8) = 0 stationary points

e not all stationary points are optimal
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Optimality Condition

a1 (8)

26, exist

e let'sassume that f is differentiable, i.e., partial derivatives ——

e if0*isoptimal, thenVf(6*) =0

e Vf(0) =0 is called the optimality condition for the problem
e there can be points that satisfy Vf(6) = 0 but are not optimal
e we call points that satisfy Vf(8) = 0 stationary points

e | not all stationary points are optimal
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e insome cases, we can solve the problem analytically
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this has unique solution 8* = (XTX)*XTy = XTy (when columns of X are linearly

independent)



Solving Optimization Problems

e in some cases, we can solve the problem analytically
e e.g, least squares: minimize f(8) = ||X6 — y||5

e optimality conditionis Vf(8) = 2XT (X0 —y) =0
this has unique solution 8* = (XTX)*XTy = XTy (when columns of X are linearly

independent)

What if optimality condition is difficult to be solved?
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lterative Algorithm

e iterative algorithm computes a sequence 81,674, ...
e 0%iscalled the k th iterate

e 061is called the starting point

flox+) < f(6%),k=12,..

i.e., each iterate is better than the previous one
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lterative Algorithm

e iterative algorithm computes a sequence 81,64, ...
e 0% is called the k th iterate

e 0lis called the starting point

flox+) < f(6%),k=12,..

i.e., each iterate is better than the previous one

e this means that f(8%) converges, but not necessarily to f*
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lterative Algorithm

e iterative algorithm computes a sequence 81,64, ...
e 0% is called the k th iterate

e 0lis called the starting point

e many iterative algorithms are descent methods, which means
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Gradient Method Summary

choose an initial 81 € R¥ and h! >0 (e.g., 81 =0,h1 = 1)
fork =1,2,..., kM

1.

= M

compute Vf(6%); quit if ||Vf(t9")||2 is small enough
form tentative update 8% = 6% — h*Vf(6¥)
htf(gtent) < f(@k), set QFt1 = Htent,hk+1 — 1.2hk

else set h*: = 0.5h* and go to step 2



Gradient Method Summary

choose an initial 81 € R¥ and h! >0 (e.g., 81 =0,h1 = 1)
fork =1,2,..., kM

1. compute Vf(6%); quit if ||[V£(6%)]|, is small enough

2. form tentative update 6" = 9% — K*Vf(0%)
3. iff(6™™) < f(6%), set 6%+ = gtent, pk+1 = 1.2hk

4. else set h*:= 0.5h* and go to step 2
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Gradient Method Summary

choose an initial 81 € R¥ and h! >0 (e.g., 81 =0,h1 = 1)
fork =1,2,..., kM

1. compute Vf(6%); quit if ||[V£(6%)]|, is small enough
2. form tentative update 6" = 9% — K*Vf(0%)
3. if f(6™™) < f(6%), set OF*1 = gtet, pk+1 = 1.2pk

4. else set h*:= 0.5h* and go to step 2




Step-size Matters

Big learning rate Small learning rate



Stopping Criterion

e in practice, we stop after a finite number K of steps
e typical stopping criterion: stop it ||Vf(0k)||2 <eork=kgm¥*
e ¢ is asmall positive number, the stopping tolerance

e kM3 isthe maximum number of iterations



Gradient Method Convergence

e (assuming some technical conditions hold) we have

97 (%), = 0 as k = oo

e ie., the gradient method always finds a stationary point

e for convex problems

» gradient method is non-heuristic

> for any starting point 8%, f(6%) - f* ask > o

® optmal statonary point
® non-optimal stationary point

e for non-convex problems

» gradient method is heuristic i

> we can (and often do) have f(8%) » f* ;



Example: Convex Objective

6y 0 £(8%)

..................

o« O =5(p"° 01 =1 +p" (0, = 1) +p" (01 46, - 1)
e fisconvex

e optimal pointis 8* = (2/3,2/3), with f*=1/9




Example: Convex Objective
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e f(6%)is a decreasing function of k, (roughly) exponentially
e @~ 0ask e



Example: Non-Convex Objective

rexy |

e gradient algorithm converges, but limit depends on initial guess



Example: Non-Convex Objective
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Example: Non-Convex Objective

f(e%) — f*
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Stochastic Gradient Descent

Goal: minimize f(8) = %Ziﬂf(xi,yi; )

Initialize 8° € R? randomly
lterate until convergence:

* Vf(O)lg=pr = 5 Ziet VS (5 ¥ )l oot
" 9t+1 - Ht — nvf(g)lezet



Stochastic Gradient Descent

Goal: minimize f(8) = Tl—lZi=1f(xi,yi; 9)

Initialize 8° € R? randomly
lterate until convergence:

« Randomly sample a point (x;, y;) from the n data points
« Compute noisy gradient §* = Vf(x;, y;;0)|g_gt
« Update 6t*t1 = gt — ngt



Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an unbiased estimate of the true gradient

Note the point (x;,y;) is uniformly random sampled from n data points, we have:

E[Vf (x;, ¥5; 6)]

1% 1%
_ ;Z VF (i 0) = V ;Z £ y50)| = V£ ()




Stochastic gradient descent generally makes more iterations than gradient descent.

Each iteration is much cheaper (by a factor of n).

VF@) =V ) £@) vs. Vf;(6)
=1

J—

Bocnantic Grodwet Descost

Bacrn Grasenmt Destwnt




Apply GD and SGD to LMS
max log L(f) = — 5 Z(yi — 072%)? — mlog(V2ro)
e The gradient of LMS is

m02zy_9Tz 'i

e The stochastic gradient of LMS is

L (o)

sample 1 o2

—Vg log L

Vg log L(Q)




Summary

e Random Search
e Closed-form
e |terative methods:
o Local Search
o GQGradient Descent
o Stochastic Gradient Descent



e Homework 1 is released
e Due: 11:59PM EST, 02/04/2026



Q&A



