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(PyTorch and JAX)
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● Advanced Topics
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Modeling: what to learn
Learning: how to learn
Implementation
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ative Models….

Learning Algorithm
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Supervised Learning

Goal: Construct a predictor 𝒇: X → Y 

Sports
Science
News

Classification: 
discrete categories

Regression:
Real-valued numbers



Classification Tasks

Diagnosing sickle
cell anemia

Feature, X Label, Y

Tax Fraud Detection

Web Classification

Predict Fulton
resident

Anemic cell
Healthy cell

Sports
Science
News

Resident
Not resident

Drive to GT, Hawk’s fan,
Shop at Publix



Regression Tasks

Weather Prediction

Estimating
Contamination



Supervised Learning

Goal: Construct a predictor 𝒇: X → Y to
   minimize a risk (performance measure) R(𝒇).

Sports
Science
News

Classification: 
discrete categories

Regression:
Real-valued number
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2. Derive loss function (by MLE or MAP)
3. Select optimizer



ML Algorithm Pipeline

Training Data
Target Function:
Predictor/Classifier/
Representation/Gener
ative Models….

Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Machine Learning for Apartment Hunting 

● Suppose you are to move to Atlanta

● And you want to find the most 

reasonably priced apartment satisfying 

your needs: 
X y



Regression algorithms

Training Data Predictor
Learning Algorithm



Regression algorithms

Training Data Predictor
Learning Algorithm

● Features:
○ Living area, distance to campus, # of bedroom …

○ Denotes as 
● Target

○ Rent
○ Denote as y

● Training set



Regression algorithms

Training Data Predictor
Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Probabilistic Model:
Linear Regression Model with Gaussian Noise



Probabilistic Model: Gaussian Likelihood



Regression algorithms

Training Data Predictor
Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Maximum log-Likelihood Estimation (MLE) 



Maximum log-Likelihood Estimation (MLE) 



Regression algorithms

Training Data Predictor
Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Select Optimizer



Select Optimizer

● Necessary Condition

● (Stochastic) Gradient Descent



Necessary Condition



Necessary Condition



Necessary Condition



Necessary Condition



Necessary Condition



Geometric Interpretation



Select Optimizer

● Necessary Condition

● (Stochastic) Gradient Descent



Gradient Method Revisit



Effect of Learning Rate in GD

Large ɑ ⇒ Fast convergence but larger residual error. Also possible oscillation.
Small ɑ ⇒ Slow convergence but small residual error.



Gradient Calculation



Gradient Method Revisit

Stochastic Approximation



Stochastic Gradient Descent



Recap

● Stochastic gradient update rule

○ Pros: online, low per-step cost
○ Cons: coordinate, (sometimes) slow-converging

● Gradient descent
 

○ Pros: fast-converging, easy to implement
○ Cons: need to read all data

● Solve normal equations

○ Pros: a single-shot algorithm! Easiest to implement
○ Cons: need to compute inverse, expensive, numerical issue (e.g., 

matrix is singular …) 



Summary

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Summary

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Polynomial Regression 

Training Data Predictor
Learning Algorithm

● Features:
○ Living area, distance to campus, # of bedroom …

○ Denotes as 
● Target

○ Rent
○ Denote as y

● Training set



Overfitting with Increased Degree

d=0 d=1

d=3 d=9



Summary

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Maximum a Posteriori (MAP)

Likelihood

Gaussian Prior



Maximum a Posteriori (MAP)

Posterior: Bayes’ 
Rule

Gaussian Prior

Likelihood



Maximum a Posteriori (MAP)

Posterior: Bayes’ 
Rule

Gaussian Prior

Likelihood
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Maximum a Posteriori (MAP)

Posterior: Bayes’ 
Rule

Gaussian Prior

Likelihood

Ridge Regression



Maximum a Posteriori (MAP)

Posterior: Bayes’ 
Rule

Laplacian Prior

Likelihood

Lasso



Select Optimizer

● Necessary Condition

● (Stochastic) Gradient Descent



Necessary Condition



Necessary Condition



Overfitting with Increased Degree

d=0 d=1

d=3 d=9



Best Degree?

● MLE with appropriate d

● MAP with large d, regularization will select the appropriate model

d=9



MLE vs. MAP

MLE 
- We chose the “best” θ that 

maximized the likelihood 
given data

- No prior

- Numerical issue
- Overfitting

MAP 
- We chose the “best” θ that 

maximized the posterior 
given data

- Prior matters

- No numerical issue
- Mitigate overfitting



ML Algorithm Pipeline

Training Data
Target Function:
Predictor/Classifier/
Representation/Gener
ative Models….

Learning Algorithm

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE/MAP, maximum margin, 

contrastive…)
3. Select optimizer



Q&A
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