

CX4240 Spring 2026

Supervised Learning: Linear Regression

Bo Dai
School of CSE, Georgia Tech
bodai@cc.gatech.edu

Organization

- *Background knowledge*
 - Probability and Statistics, Linear Algebra, Optimization, Coding skills (PyTorch and JAX)
- *Supervised learning*
- *Unsupervised learning*
- *Advanced Topics*

Syllabus

- *Background knowledge*
 - Probability and Statistics, Linear Algebra, Optimization, Coding skills
- *Supervised learning*
- *Unsupervised learning*
- *Advanced Topics: LLM & RL*

Modeling: **what to learn**
Learning: **how to learn**
Implementation

Syllabus

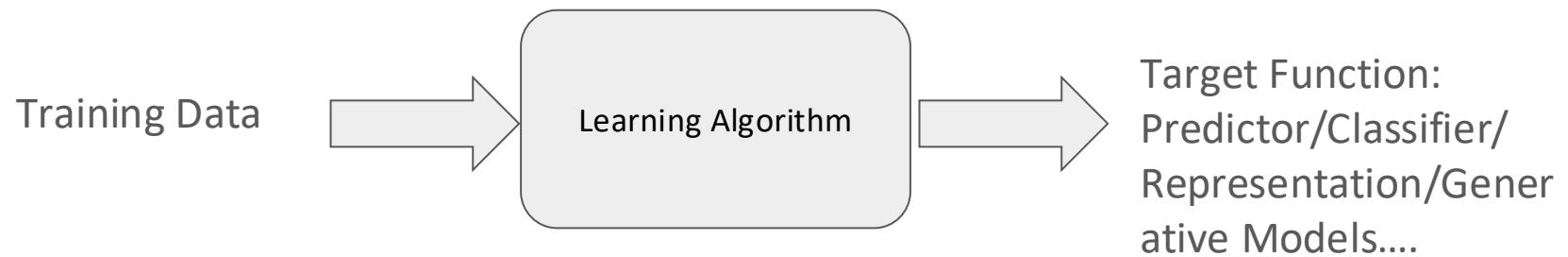
- ***Background knowledge***
 - Probability and Statistics, Linear Algebra, Optimization, Coding skills
- ***Supervised learning***
- ***Unsupervised learning***
- ***Advanced Topics: LLM & RL***

Modeling: **Probability and Statistics, Linear Algebra**

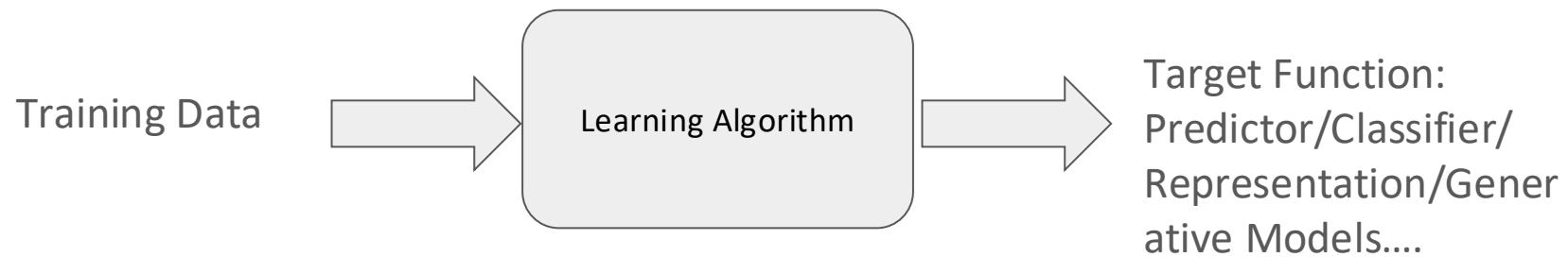
Learning: **Optimization, Linear Algebra**

Implementation: **Coding (PyTorch/JAX)**

ML Algorithm Pipeline



ML Algorithm Pipeline



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by **MLE/MAP**, maximum margin, contrastive...)
3. Select optimizer

Syllabus

- *Background knowledge*
 - Probability and Statistics, Linear Algebra, Optimization, Coding skills
- *Supervised learning*
- *Unsupervised learning*
- *Advanced Topics*

Modeling: **Probability and Statistics, Linear Algebra**

Learning: **Optimization, Linear Algebra**

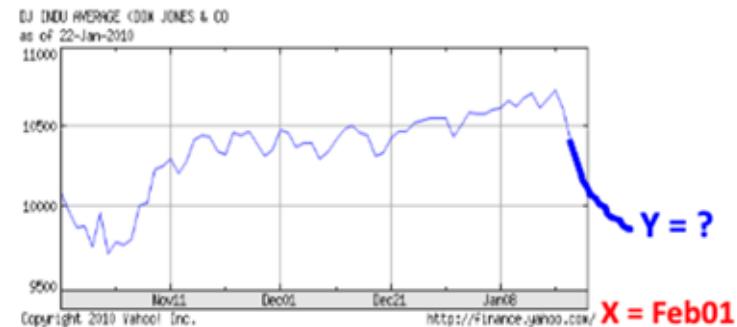
Implementation: **Coding**

Supervised Learning

Goal: Construct a predictor $f: X \rightarrow Y$

Classification:
discrete categories

Sports
Science
News



Regression:
Real-valued numbers

Classification Tasks

Regression Tasks

Weather Prediction

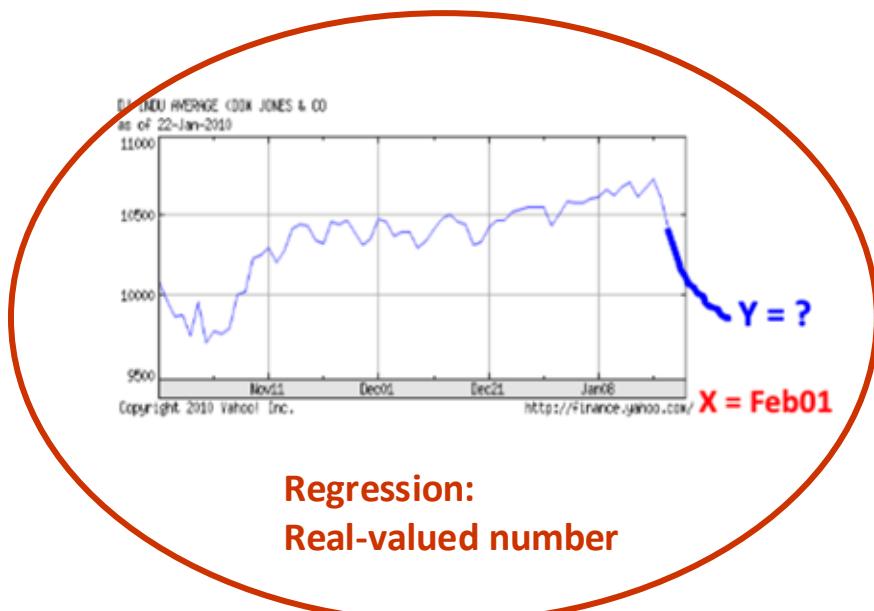
Estimating Contamination

Supervised Learning

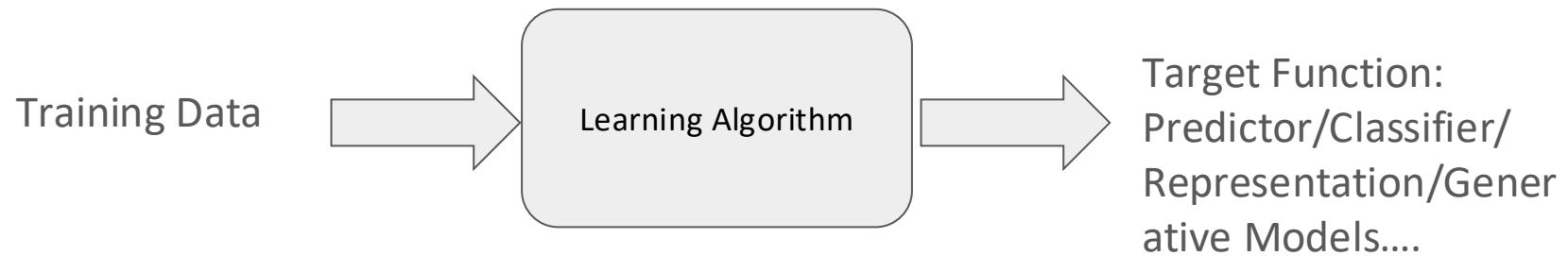
Goal: Construct a predictor $f: X \rightarrow Y$ to
minimize a risk (performance measure) $R(f)$.

Sports
Science
News

Classification:
discrete categories



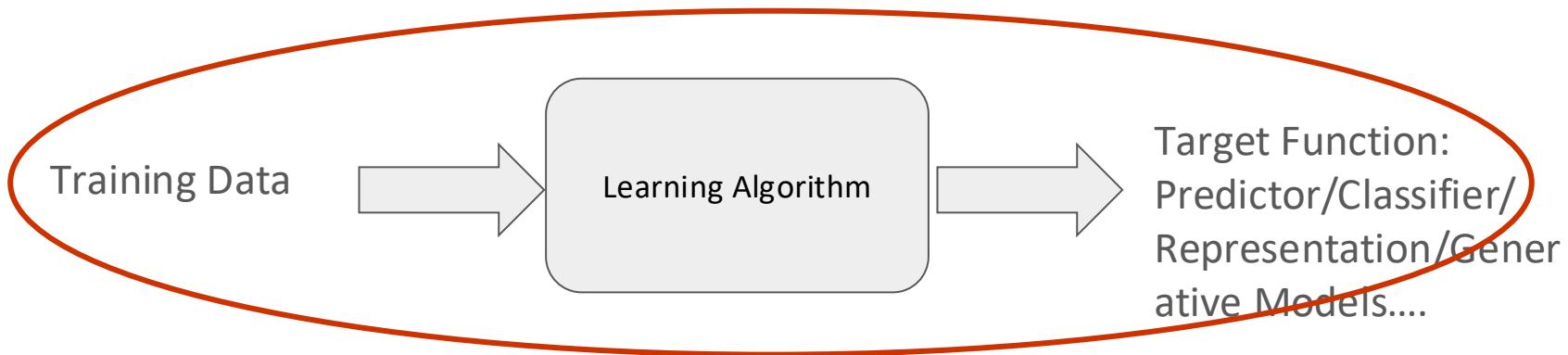
ML Algorithm Pipeline



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

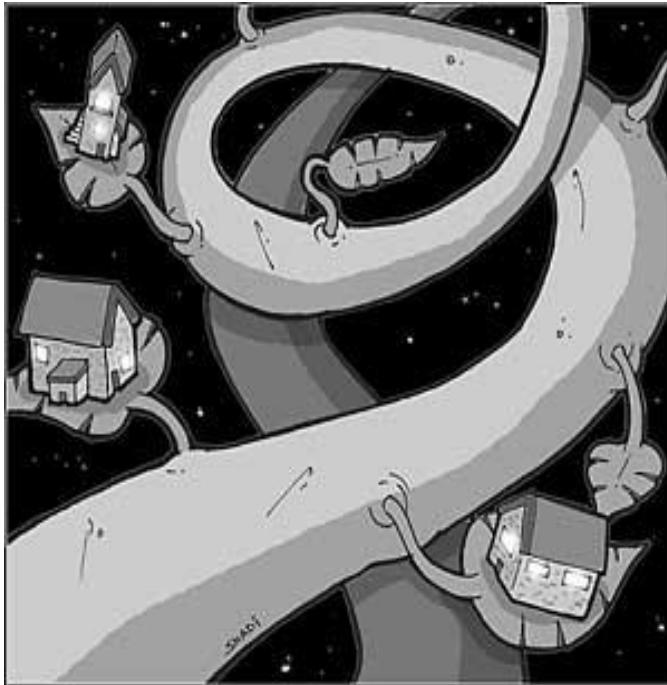
ML Algorithm Pipeline



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Machine Learning for Apartment Hunting



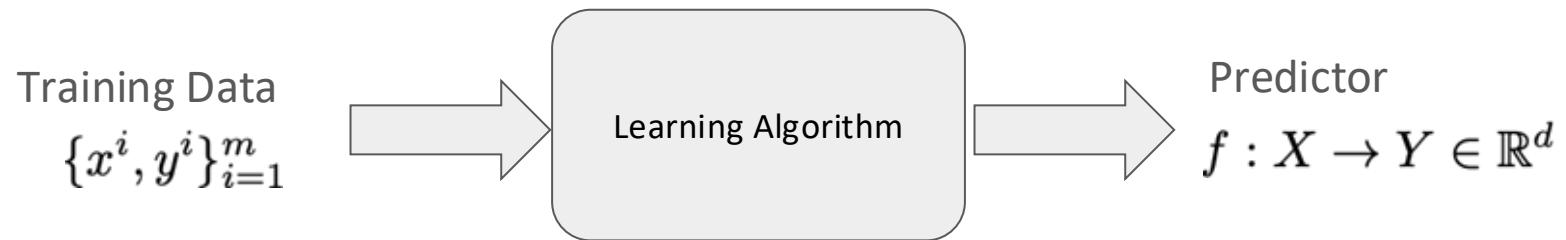
- Suppose you are to move to Atlanta
- And you want to find the **most reasonably priced** apartment satisfying your **needs**:

X y

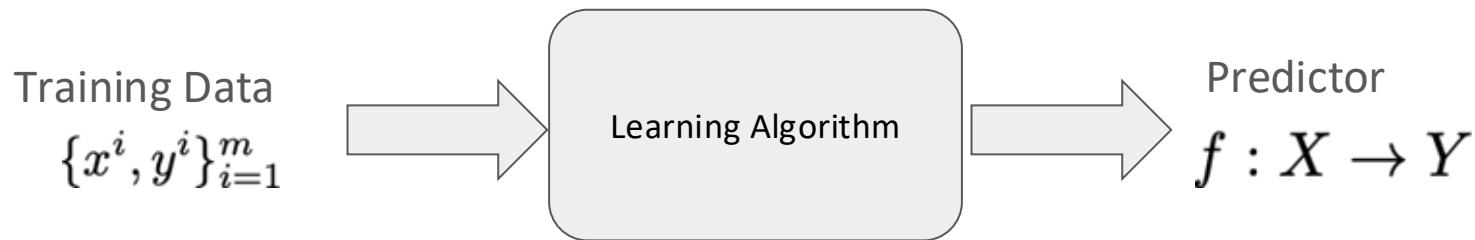
{

Living area (ft ²)	# bedroom	Monthly rent (\$)
230	1	900
506	2	1800
433	2	1500
190	1	800
...		
150	1	?
270	1.5	?

Regression algorithms



Regression algorithms



- **Features:**
 - Living area, distance to campus, # of bedroom ...
 - Denotes as $x = (x_1, x_2, \dots, x_n)^\top$

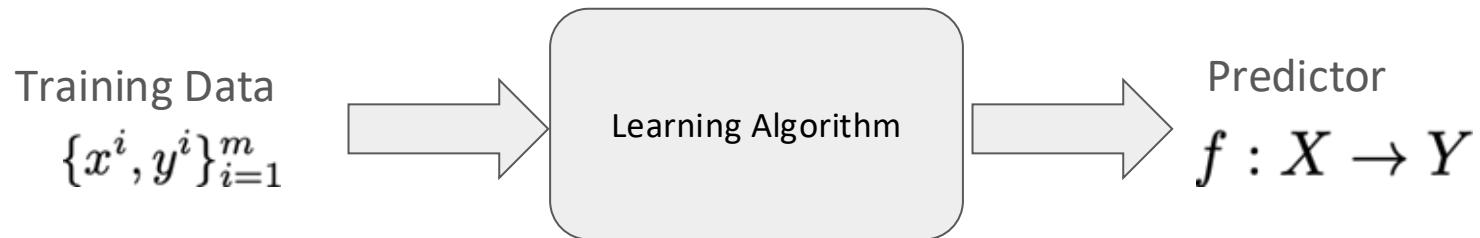
- **Target**
 - Rent
 - Denote as y
- **Training set**

$$X = (x^1, x^2, \dots, x^m)$$
$$y = (y^1, y^2, \dots, y^m)^\top$$

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Living area (ft ²)	# bedroom	Monthly rent (\$)
230	1	900
506	2	1800
433	2	1500
190	1	800
...		
150	1	?
270	1.5	?

Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Probabilistic Model:

Linear Regression Model with Gaussian Noise

- Assume y is a linear function of x (features) plus noise ϵ

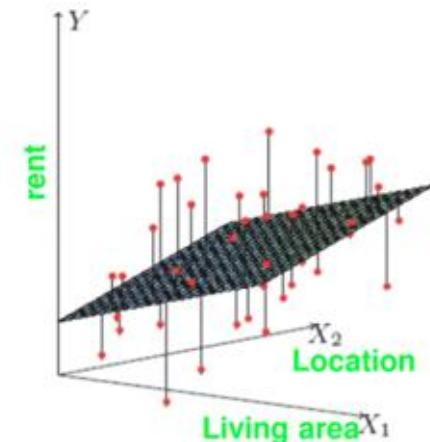
$$y = \theta_0 + \theta_1 x_1 + \cdots + \theta_n x_n + \epsilon$$

where ϵ is an error model as Gaussian $N(0, \sigma^2)$

- Let $\theta = (\theta_0, \theta_1, \dots, \theta_n)^\top$, and augment data by one dimension

$$x \leftarrow (1, x)^\top$$

Then $y = \theta^\top x + \epsilon$



Probabilistic Model: Gaussian Likelihood

- Assume y is a linear in x plus noise ϵ

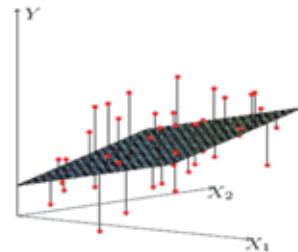
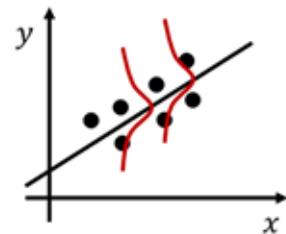
$$y = \theta^\top x + \epsilon$$

- Assume ϵ follows a Gaussian $N(0, \sigma^2)$

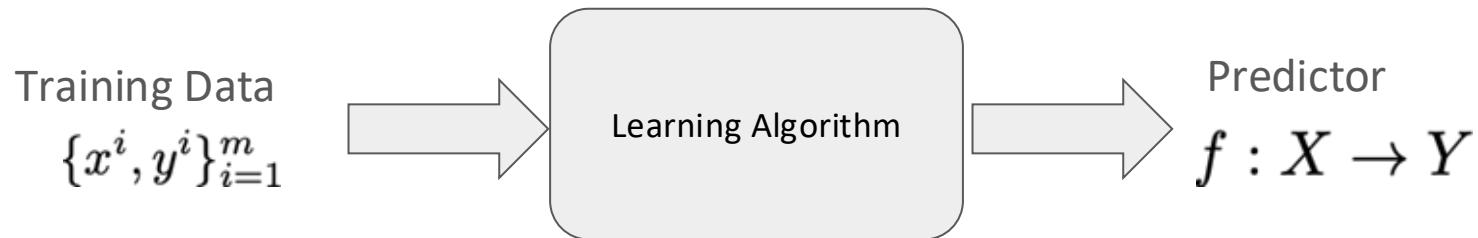
$$p(y^i | x^i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^i - \theta^\top x^i)^2}{2\sigma^2}\right)$$

- By independence assumption, likelihood is

$$L(\theta) = \prod_i^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^m \exp\left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2}\right)$$



Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Maximum log-Likelihood Estimation (MLE)

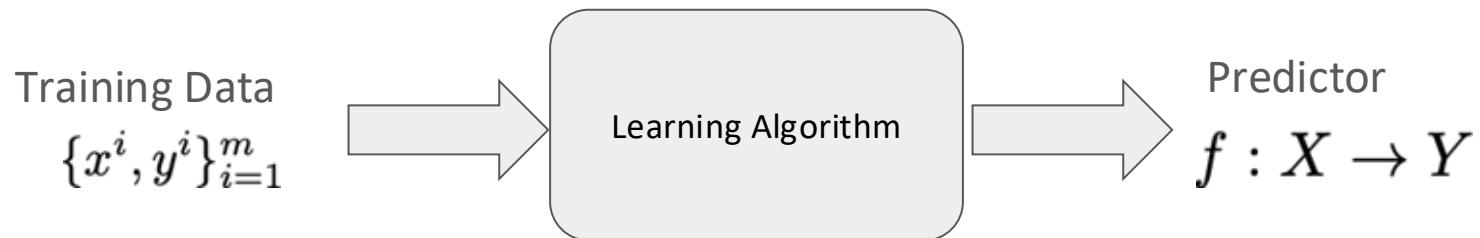
$$L(\theta) = \prod_i^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right)$$

Maximum log-Likelihood Estimation (MLE)

$$L(\theta) = \prod_i^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right)$$

$$\max_{\theta} \log L(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 - m \log(\sqrt{2\pi}\sigma)$$

Regression algorithms



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Select Optimizer

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

Select Optimizer

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

- Necessary Condition
- (Stochastic) Gradient Descent

Necessary Condition

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = 0$$

Necessary Condition

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^{i\top} = 0$$

Necessary Condition

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

$$\begin{aligned} \frac{\partial \log L(\theta)}{\partial \theta} &= -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^{i\top} = 0 \\ \Leftrightarrow -\frac{2}{m} \sum_{i=1}^m y^i x^i + \frac{2}{m} \sum_{i=1}^m x^i x^{i\top} \theta &= 0 \end{aligned}$$

Necessary Condition

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m y^i x^i + \frac{2}{m} \sum_{i=1}^m x^i x^{i^\top} \theta = 0$$

Necessary Condition

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m y^i x^i + \frac{2}{m} \sum_{i=1}^m x^i x^{i\top} \theta = 0$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} (x^1 \dots, x^m) (y^1 \dots, y^m)^\top + \frac{2}{m} (x^1, \dots, x^m) (x^1, \dots, x^m)^\top \theta = 0$$

Define $X = (x^1, x^2, \dots, x^m)$, $y = (y^1, y^2, \dots, y^m)^\top$, gradient becomes

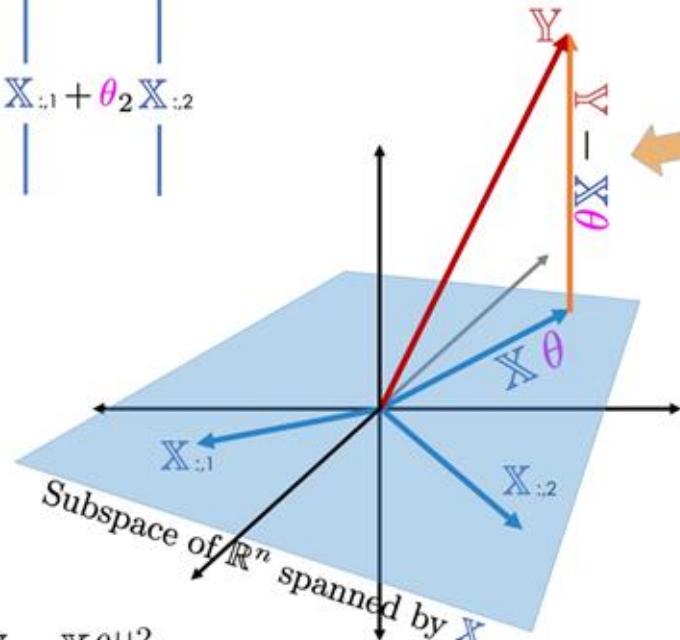
$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} Xy + \frac{2}{m} XX^\top \theta = 0$$

$$\Rightarrow \hat{\theta} = (XX^\top)^{-1} Xy$$

Geometric Interpretation

$$\hat{\theta} = (XX^\top)^{-1}Xy$$

$$\begin{bmatrix} n \\ \vdots \\ \hat{Y} \\ \vdots \\ 1 \end{bmatrix} = \theta_1 \mathbb{X}_{:,1} + \theta_2 \mathbb{X}_{:,2}$$



$$R(\theta) = \frac{1}{n} \|\mathbb{Y} - \mathbb{X}\theta\|_2^2$$

Select Optimizer

$$\min_{\theta} -\log L(\theta) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2$$

- Necessary Condition
- (Stochastic) Gradient Descent

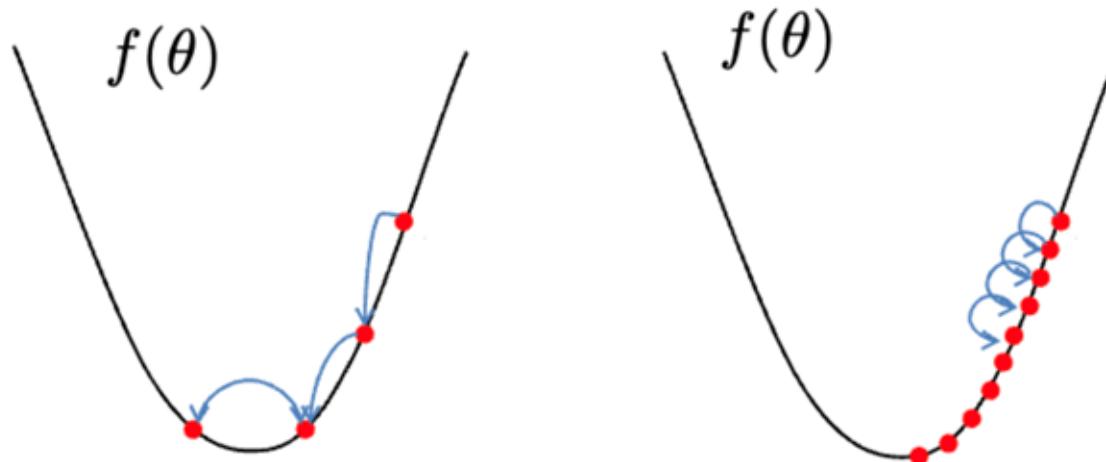
$$\min_{\theta} -\log L(\theta) \propto \underbrace{\frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2}_{f(\theta)}$$

Gradient Method Revisit

choose an initial $\theta^1 \in \mathbf{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0, h^1 = 1$)
 for $k = 1, 2, \dots, k^{\max}$

1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
2. form tentative update $\theta^{\text{tent}} = \theta^k - h^k \nabla f(\theta^k)$
3. if $f(\theta^{\text{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}, h^{k+1} = 1.2h^k$
4. else set $h^k := 0.5h^k$ and go to step 2

Effect of Learning Rate in GD



Large α \Rightarrow Fast convergence but larger residual error. Also possible oscillation.
Small α \Rightarrow Slow convergence but small residual error.

Gradient Calculation

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^i$$

form tentative update $\theta^{\text{tent}} = \theta^k - h^k \nabla f(\theta^k)$

$$\theta^k + \frac{h^k}{m} \sum_{i=1}^m (y^i - (\theta^k)^\top x^i) (x^i)^\top$$

Gradient Method Revisit

choose an initial $\theta^1 \in \mathbf{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0, h^1 = 1$)
for $k = 1, 2, \dots, k^{\max}$

Stochastic Approximation

1. compute $\nabla f(\theta^k)$; quit if $\|\nabla f(\theta^k)\|_2$ is small enough
2. form tentative update $\theta^{\text{tent}} = \theta^k - h^k \nabla f(\theta^k)$
3. if $f(\theta^{\text{tent}}) < f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}, h^{k+1} = 1.2h^k$
4. else set $h^k := 0.5h^k$ and go to step 2

Stochastic Gradient Descent

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^i \approx (y^i - \hat{\theta}^t{}^\top x^i) x^i$$

Initialize $\theta^0 \in \mathbb{R}^d$ randomly Iterate until convergence:

- 1 Randomly sample a point (x_i, y_i) from the n data points
- 2 Compute noisy gradient $\tilde{g}^t = (y^i - (\theta^t)^\top x^i)(x^i)^\top$
- 3 Update (GD): $\theta^{t+1} = \theta^t - \eta \tilde{g}^t$

Recap

- Stochastic gradient update rule

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \beta \left(y^i - (\hat{\theta}^t)^\top x^i \right) x^i$$

- Pros: online, low per-step cost
- Cons: coordinate, (sometimes) slow-converging

- Gradient descent

$$\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{\alpha}{m} \sum_{i=1}^m \left(y^i - (\hat{\theta}^t)^\top x^i \right) x^i$$

- Pros: fast-converging, easy to implement
- Cons: need to read all data

- Solve normal equations

$$(X^\top X) \hat{\theta} = X^\top y$$

- Pros: a single-shot algorithm! Easiest to implement
- Cons: need to compute inverse, expensive, numerical issue (e.g., matrix is singular ...)

Summary

General ML Algorithm Pipeline

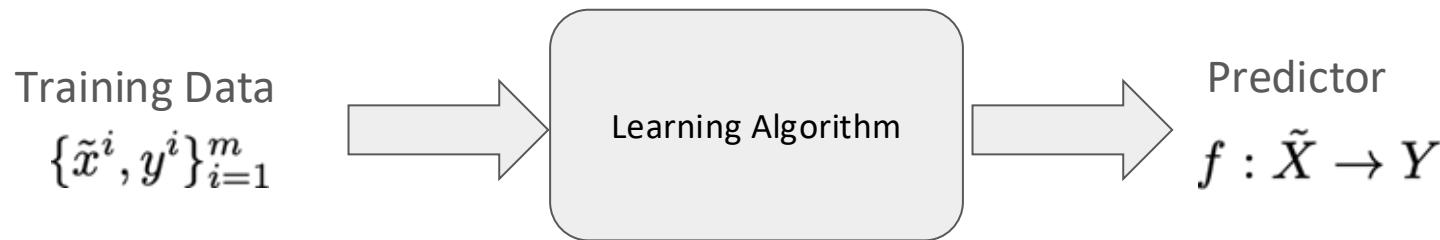
1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Summary

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer

Polynomial Regression



- **Features:**

- Living area, distance to campus, # of bedroom ...
- Denotes as $\tilde{x} = [1, x_1, (x_1)^2, \dots, (x_1)^d, \dots, x_n, \dots, (x_n)^d]$

$$\begin{aligned} y = & \theta_0 + \theta_1^1 x_1 + \theta_1^2 (x_1)^2 + \theta_1^3 (x_1)^3 + \dots + \theta_1^d (x_1)^d \\ & + \theta_2^1 x_2 + \theta_2^2 (x_2)^2 + \theta_2^3 (x_2)^3 + \dots + \theta_2^d (x_2)^d \\ & + \dots \\ & + \theta_n^1 x_n + \theta_n^2 (x_n)^2 + \theta_n^3 (x_n)^3 + \dots + \theta_n^d (x_n)^d \end{aligned}$$

- **Target**

- Rent
- Denote as \mathbf{y}

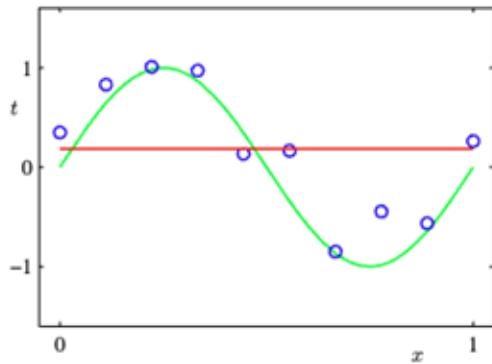
- **Training set**

$$\tilde{X} = [\tilde{x}^1, \tilde{x}^2, \dots, \tilde{x}^m]$$

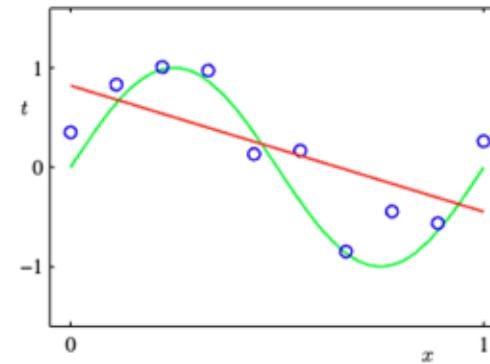
$$\mathbf{y} = (y^1, y^2, \dots, y^m)^\top$$

Overfitting with Increased Degree

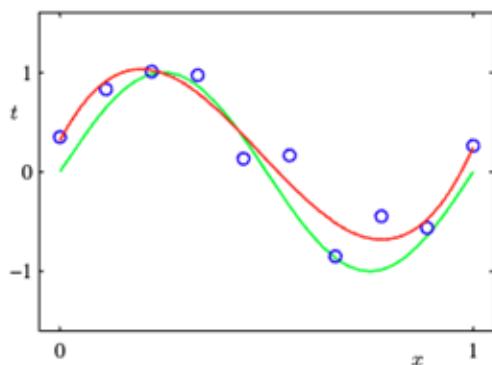
$d=0$



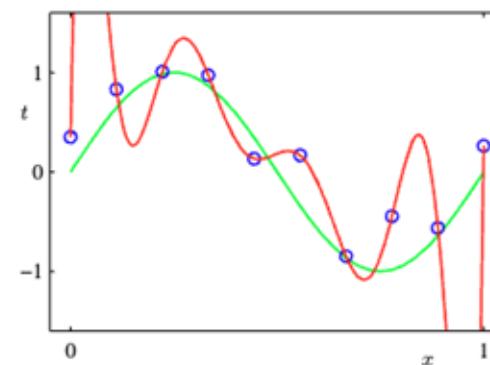
$d=1$



$d=3$



$d=9$



Summary

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or [MAP](#))
3. Select optimizer

Maximum a Posteriori (MAP)

$$L(\theta) = \prod_{i=1}^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right) \quad \text{Likelihood}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|^2) \quad \text{Gaussian Prior}$$

Maximum a Posteriori (MAP)

$$L(\theta) = \prod_{i=1}^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right) \quad \text{Likelihood}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|_2^2) \quad \text{Gaussian Prior}$$

$$p(\theta | \{x^i, y^i\}_{i=1}^m) = \frac{\prod_{i=1}^m p(y^i | x^i, \theta) p(\theta)}{\int \prod_{i=1}^m p(y^i | x^i, \theta) p(\theta) d\theta} \quad \text{Posterior: Bayes' Rule}$$

Maximum a Posteriori (MAP)

$$L(\theta) = \prod_{i=1}^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right) \quad \text{Likelihood}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|_2^2) \quad \text{Gaussian Prior}$$

$$p(\theta | \{x^i, y^i\}_{i=1}^m) = \frac{\prod_{i=1}^m p(y^i | x^i, \theta) p(\theta)}{\int \prod_{i=1}^m p(y^i | x^i, \theta) p(\theta) d\theta} \quad \text{Posterior: Bayes' Rule}$$

$$\max_{\theta} \log p(\theta | \{x^i, y^i\}_{i=1}^m) \quad \text{MAP}$$

Maximum a Posteriori (MAP)

$$L(\theta) = \prod_{i=1}^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right) \quad \text{Likelihood}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|_2^2) \quad \text{Gaussian Prior}$$

$$p(\theta | \{x^i, y^i\}_{i=1}^m) = \frac{\prod_{i=1}^m p(y^i | x^i, \theta) p(\theta)}{\int \prod_{i=1}^m p(y^i | x^i, \theta) p(\theta) d\theta} \quad \text{Posterior: Bayes' Rule}$$

$$\max_{\theta} \log p(\theta | \{x^i, y^i\}_{i=1}^m) = \log L(\theta) + \log p(\theta) \quad \text{Ridge Regression}$$

$$\propto -\frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 - \lambda \|\theta\|_2^2$$

Maximum a Posteriori (MAP)

$$L(\theta) = \prod_{i=1}^m p(y^i | x^i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right)^m \exp \left(-\frac{\sum_i^m (y^i - \theta^\top x^i)^2}{2\sigma^2} \right) \quad \text{Likelihood}$$

$$p(\theta) \propto \exp(-\lambda \|\theta\|_1) \quad \text{Laplacian Prior}$$

$$p(\theta | \{x^i, y^i\}_{i=1}^m) = \frac{\prod_{i=1}^m p(y^i | x^i, \theta) p(\theta)}{\int \prod_{i=1}^m p(y^i | x^i, \theta) p(\theta) d\theta} \quad \text{Posterior: Bayes' Rule}$$

$$\begin{aligned} \max_{\theta} \log p(\theta | \{x^i, y^i\}_{i=1}^m) &= \log L(\theta) + \log p(\theta) \quad \text{Lasso} \\ &\propto -\frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 - \lambda \|\theta\|_1 \end{aligned}$$

Select Optimizer

$$\min_{\theta} -\log p(\theta | \{x^i, y^i\}_{i=1}^m) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 + \lambda \|\theta\|_2^2$$

- Necessary Condition
- (Stochastic) Gradient Descent

Necessary Condition

$$\min_{\theta} -\log p(\theta | \{x^i, y^i\}_{i=1}^m) \propto \frac{1}{m} \sum_{i=1}^m (y^i - \theta^\top x^i)^2 + \lambda \|\theta\|_2^2$$

$$\frac{\partial \log L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i=1}^m (y^i - \theta^\top x^i) x^i \quad \frac{\partial \lambda \theta^\top \theta}{\partial \theta} = 2\lambda \theta$$

$$\frac{2}{m} \sum_{i=1}^m y^i x^i - \frac{2}{m} \sum_{i=1}^m x^i (x^i)^\top \theta + 2\lambda \theta = 0$$

Necessary Condition

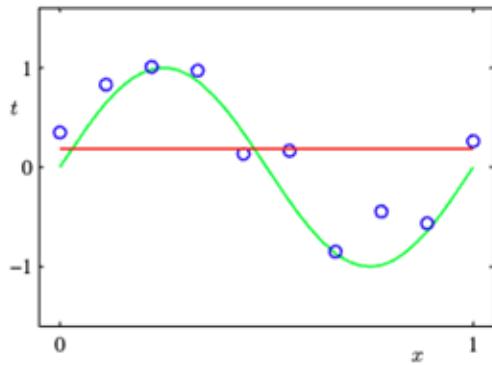
$$\frac{2}{m} \sum_{i=1}^m y^i x^i - \frac{2}{m} \sum_{i=1}^m x^i (x^i)^\top \theta + 2\lambda\theta = 0$$

$$\frac{2}{m} X y - \frac{2}{m} X X^\top \theta + \textcolor{red}{2\lambda\theta} = 0$$

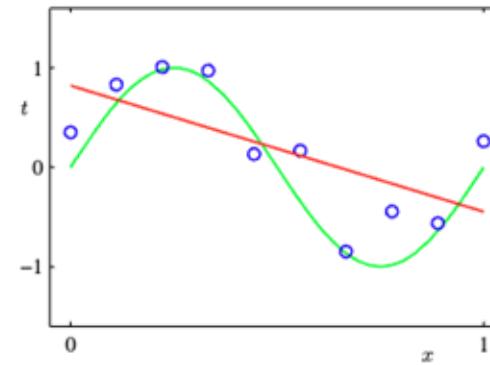
$$\Rightarrow \hat{\theta} = (X X^\top + \textcolor{red}{\lambda m I})^{-1} X y$$

Overfitting with Increased Degree

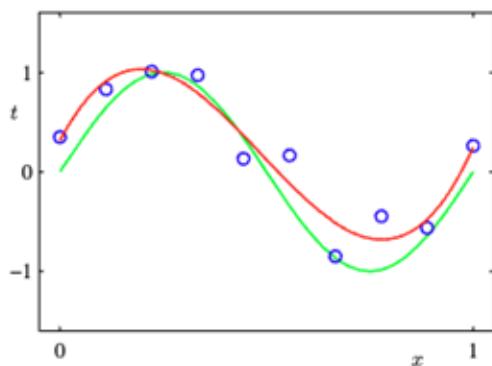
$d=0$



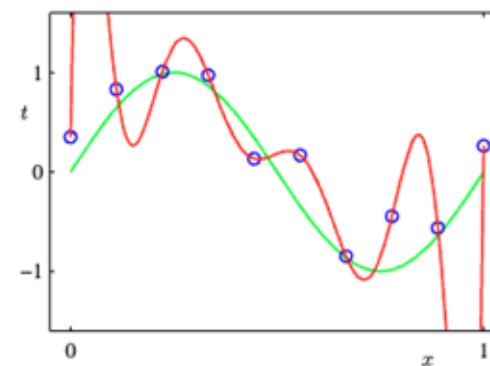
$d=1$



$d=3$

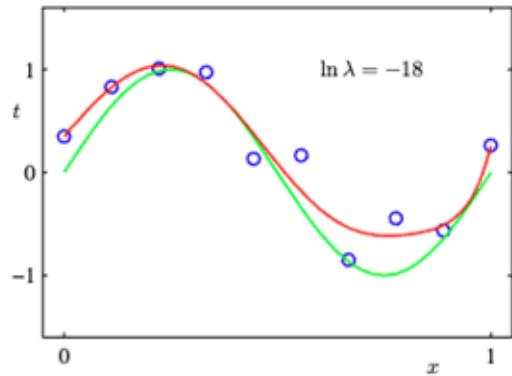
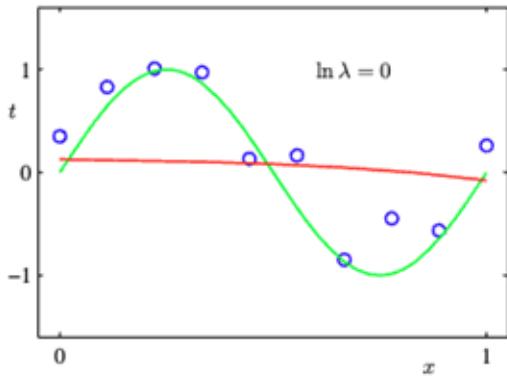


$d=9$



Best Degree?

$d=9$



$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
0.35	0.35	0.13
232.37	4.74	-0.05
-5321.83	-0.77	-0.06
48568.31	-31.97	-0.05
-231639.30	-3.89	-0.03
640042.26	55.28	-0.02
-1061800.52	41.32	-0.01
1042400.18	-45.95	-0.00
-557682.99	-91.53	0.00
125201.43	72.68	0.01

- MLE with appropriate d
- MAP with large d , regularization will select the appropriate model

MLE vs. MAP

MLE

- We chose the “best” θ that maximized the **likelihood** given data
- No prior

$$\hat{\theta} = (XX^\top)^{-1}Xy$$

- Numerical issue
- Overfitting

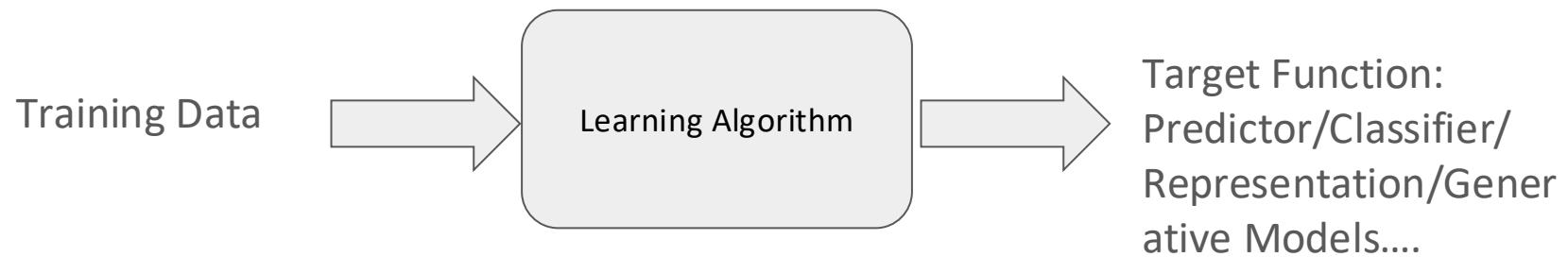
MAP

- We chose the “best” θ that maximized the **posterior** given data
- Prior matters

$$\hat{\theta} = (XX^\top + \lambda m I)^{-1}Xy$$

- No numerical issue
- Mitigate overfitting

ML Algorithm Pipeline



General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by **MLE/MAP**, maximum margin, contrastive...)
3. Select optimizer

Q&A