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Project

Team Size

e FEach project must be completed in a team of 33§, 5-6.
e Once you have formed your group, please share it on the Team Signup sheet:

CX4240 Project Team Signup

e If you have trouble forming a group, please send us an email and we will help you find
project partners.

The team formation email will be due at 11:59 PM on Feb 16th.


https://docs.google.com/spreadsheets/d/1awl9DVzp4cUMU4E6URY239U1UrOOzGwZ0JzPyogGv34/edit?usp=sharing

Project

Project Topics:

e Reproduce classic papers, include but not limited to:
o Deep Residual Learning for Image Recognition

o Auto-Encoding Variational Bayes

o A Simple Framework for Contrastive Learning of Visual Representations.
o Seqguence to Sequence Learning with Neural Networks

o Efficient Estimation of Word Representations in Vector Space

o etc

e You may also refer to the https://cs231n.stanford.edu/project.html.


https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1301.3781
http://cs229.stanford.edu/projects2012.html

Project

Deliverables:

m  Presentation (15%): Every team will have a 10-mins presentation.
m  Final Report (25%): All write-ups should use the

Your final report is expected to be up to 6 pages excluding references. It should have
roughly the following format:

e Introduction: problem definition and motivation
Background & Related Work: background info and literature survey

e Methods — Overview of your proposed method — Intuition on why should it be better
than the state of the art — Details of models and algorithms that you developed

e Experiments — Description of your testbed and a list of questions your experiments
are designed to answer — Details of the experiments and results

e Conclusion: discussion and future work

The project final report will be due at 11:59 PM on May 4th


https://nips.cc/Conferences/2020/PaperInformation/StyleFiles

Project

Criteria:
o 30% for proposed method (soundness and originality)
o 30% for correctness, completeness, and difficulty of experiments and figures
o 20% for empirical and theoretical analysis of results and methods
o 20% for quality of writing (clarity, organization, flow, etc.)



Project

Criteria:
o 30% for proposed method (soundness and originality)
o 30% for correctness, completeness, and difficulty of experiments and figures
o 20% for empirical and theoretical analysis of results and methods
o 20% for quality of writing (clarity, organization, flow, etc.)

o 10% for presentation completed in 10mins.



Computation Resources

e Google Colaboratory allows free access to run Jupyter Notebooks using
GPU resources and Geminil.

e The Google Cloud Platform and AWS Educate are also good resources.

e The GitHub Student Developer Pack also offers free Microsoft Azure and
Digital Ocean credits.

e This semester, we are also offering PACE ICE, Georgia Tech'’s in-home
cluster to students.



https://colab.research.google.com/

ML Algorithm Pipeline

Training Data

General ML Algorithm Pipeline

> Learning Algorithm

=)

1. Build probabilistic models
2. Derive loss function (by MLE or MAP....)
3. Select optimizer

Target Function:
Predictor/Classifier/
Representation....



Regression Algorithms

Training Data . ' Predictor
{mz.7yi}?;1 > Learning Algorithm f X Y

Y eR

Linear Regression Pipeline

1. Build probabilistic models:
Gaussian Distribution + Linear Model
2. Derive loss function: MLE and MAP

3. Select optimizer
Necessary Condition vs. (Stochastic) GD



Probabilistic Model: Gaussian Likelihood

e Assume y is a linear in x plus noise €

y=0"x+¢
e Assume € follows a Gaussian N (0, o)
e ~ N(0,0)

y=0"z+e~N(0O"z,0)
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Statistics

e Expectation: The mean value, center of mass, first moment:
Blg00l = | g@petds

e N-th moment: g(x) = x™
e N-th central moment: g(x) = (x — )" p = Ex[z]
o Mean: Ex[X] = [ . xpy(x)dx
» |E[aX] = aE[X]
" |Ela+X]=a+E[X]
e Variance(Second central moment): Var(x) = Ex[(X — Ex[X])?] = Ex[X?] — Ex[X]?

= Var(aX) = a?Var(X)
» Var(a+X) =Var(X)



Probabilistic Model: Gaussian Likelihood

e Assume y is a linear in x plus noise €

y=0"x+¢

e Assume € follows a Gaussian N (0, o)
e ~ N(0,0)

Ely] =0"z+Ele) =60"x




Operations on Gaussian R.V.

The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x
is distributed
E(AX +b) = AE(X) + b
Cov(AX + b) = ACov(X)AT
this means that for Gaussian distributed quantities:
X~NWwZX)—>AX+b~N(Au+ b, AZAT)

The sum of two independent Gaussian r.v. is a Gaussian

Y=X1+X,X1 LXo =y =pg +Up, 2y =21 + 25

The multiplication of two Gaussian functions is another Gaussian function (although
no longer normalized)
N(a,A)N(b,B) «< N(c,C)
whereC = (A1 +B 1)L, c=CA la+ CB™ b




Probabilistic Model: Gaussian Likelihood
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Regression Algorithms

Training Data . ' Predictor
{mz.7yi}?;1 > Learning Algorithm f X Y

Y eR

Linear Regression Pipeline

1. Build probabilistic models:
Gaussian Distribution + Linear Model
2. Derive loss function: MLE and MAP

3. Select optimizer
Necessary Condition vs. (Stochastic) GD



Maximum log-Likelihood Estimation (MLE)

m o 1 m Z:n i_QT i\2
o = Jo0hso) = (o) o (-EO )

] S T z
max log L(6 552 Z: —0'z")* —mlog(V2ro)



Maximum a Posteriori (MAP)

= . 1 \™ PN yi—BTxiz Likelihood
wor =] [etriese) = () o -EL0 )

p(0) < exp(—\||0]5) Gaussian Prior

2 [[i~, p(y'|=*, 0)p(0) Posterior:
O{z",y'}" ) = L —— ‘
p(Oz"y'}i%) 11, p(yi|zt, 0)p(0)de Bayes’ Rule

max logp(9|{xi, yz}?ll) = log L(0) + log p(0) Ridge Regression

0
1 - 7 1
<~ L3y~ 07a | Al
1=1




MLE vs. MAP

MLE

We chose the “best” 6
that maximized the
ikelihood given data
No prior

8 = (XXT)"LXy

Numerical issue
Overtitting

MAP

We chose the “best” 6
that maximized the

posterior given data
Prior matters

0=(XX" + xml)" Xy

No numerical issue
Mitigate overfitting



MLE vs. MAP

MLE MAP
- We chose the “best” 6 - We chose the “best” 8

that maximized the that maximized the
likelihood given data posterior given data

- No prior - Prior matters

6 = (XXT)™"Xy 6=(XXT 4+ aml) " Xy

oyt 12155 = \/_ ( —eTx‘))




Supervised Learning

Goal: Construct a predictor f: X —» Y

L) (MU AVERAGE (DOX JOMES & (O
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Classification: Regression:

discrete categories Real-valued numbers



Classification Tasks

Diagnosing sickle
cell anemia

Tax Fraud Detection

Web Classification

Feature, X

]

Refund Marital Taxable
Status Income

No Married |80K

4

J

J

Label, Y

Anemic cell
Healthy cell

=

Sports
Science
News



ML Algorithm Pipeline

Training Data

General ML Algorithm Pipeline

> Learning Algorithm

=)

1. Build probabilistic models
2. Derive loss function (by MLE or MAP....)
3. Select optimizer

Target Function:
Predictor/Classifier/
Representation....



Classification algorithms

Training Data P Predictor
i iim > Learning Algorithm .
{z*, y'}iZ fr XY
Binary Classification Y € {0,1}

Multiclass Classification Y €{0,1,...,k}

Refund Marital Taxable

. Status Income
Tax Fraud Detection I:>

No Married |80K ®

Sports

:> Science

News

Web Classification




Regression algorithms

Training Data
{xzayz}:’;l

> Learning Algorithm

Predictor

f: X—-

Y € R?




Binary Classification Algorithms

Training Data . Predictor
L N L ing A it
{m,L,yz};:.,;l earning gorithm f : X % Y
Binary Classification Y € {0,1}

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Probabilistic Model in Regression: Gaussian Likelihood

ability density
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Classification algorithms

Training Data P Predictor
i iim > Learning Algorithm .
{z*, y'}iZ fr XY
Binary Classification Y € {0,1}

Multiclass Classification Y €{0,1,...,k}

Refund Marital Taxable

. Status Income
Tax Fraud Detection I:>

No Married |80K ®

Sports

:> Science

News

Web Classification




Probabilistic Model in Classification: Bernoulli Likelihood

ify=1
P 7 p € [0,1]
1—p ify=0

Bernoulli Distribution (p=0.7) @
-
W

p(y) =p*(1 —p)" ¥ .




Probabilistic Model in Classification: Bernoulli Likelihood
p(y) =p?(1—p)*=¥)  pel0,1]

p(y|z;0) = ply = 1|0 T 2)¥{1 — p(y = 1|0 z)}1-¥)



Probabilistic Model in Classification: Bernoulli Likelihood
p(y) =p?(1 —p)1~¥) pe0,1]

p(ylz; 0) = p(y = 116" 2)V{1 — p(y = 1| T z)}1-¥)

p(y =1]0"z) € [0,1]



Probabilistic Model in Classification: Bernoulli Likelihood

p(y=10"z)€[0,1] 0TzeR

o(z)




Probabilistic Model in Classification: Bernoulli Likelihood

p(y=10"z)€[0,1] 0TzeR

o(z)

0
z

ply=1|0"z) =0(0"z) € [0,1]



Probabilistic Model in Classification: Bernoulli Likelihood

e |ogistic regression model

p(y = 1|‘,‘B79) — 1+exp(1—9T:1:)

e Note that

B - 1 _ exp(—0"x)
p(y — 0|£U, 0) =1- l4exp(—0Tz) 1+6§P(—9T$)



Logistic Regression is a Linear Classifier

e Decision boundaries for Logistic Regression?
o At the decision boundary, label 1/0 are equiprobable.

1 1

Py =1|x,0) = g P(y =0|x,0) = .

T T
to be equal: e ¥ *x=¢e% ¥, whose only solution is fTx = 0.




Logistic Regression is a Linear Classifier

e Decision boundaries for Logistic Regression?
o At the decision boundary, label 1/0 are equiprobable.

1 1
Py =1[x,0) = T P(y =0[x,0) = 5 A
to be equal: e_oTx = eeTx, whose only solution is fTx = 0.
A
‘ + 0
.. .o “ 4
v/ = Decision boundary is linear. N i
NS *
v = Logistic regression is a probabilistic linear classifier. = 4
___ :_— \\\ 9 X = O




Binary Classification Algorithms

Training Data . Predictor
L N L ing A it
{m,L,yz}?;l earning gorithm f : X % Y
Binary Classification Y € {0,1}

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



MLE

e |ogistic regression model

p(y = 1|$’ 0) = 1—|—exp(1—0T:r)
e Note that

. . 1 _ exp(—0"z)
p(y =0|z,0) =1 — 1+exp(—0Tz) 1+el:)<p(—9Tw)

e Plugin

[(0) : =log rp(y"|:c’, 6) (Bernoulli)

=1



MLE

e |ogistic regression model

p(y = 1|$’ 9) = 1-|—exp(1—0T:v)

e Note that
_ _ 1 __exp(—0"x)
p(y = Ojz, 0) =1- l4+exp(—60Tzx) l—T-eI))cp(—O:?x)
e Plugin o
7 [(0) : =log [_p(y"|:c’,0) (Bernoulli)

- exp(—0'z") 0
Zlog (1 - exp(—OTa:")) \(i,_ol+ o8 (1 -

1—y? yi



MLE

e |ogistic regression model

p(y = 1|$’ 9) = 1-|—exp(1—0T:v)

e Note that

. 1 _ex (—OTw)
p(y =0|z,0) =1 — 1+exp(—0Tz) 1+e1:)<p(—6Tw)

1(0) : 1og[ p(y|z?, 0) (Bernoulli)

exp(—0 " z?) ; 1 ;
~ | I(y' = 1 — ) I(y* =1
(1 + exp(— OT:U")) u+ & (1 + exp(—HT:c’)) \(i,_l
1—yi yi

y —1)8"z° —log(1 + exp(—0"z%))



MAP

e |ogistic regression model

p(y = 1lz,0) = l-l-exp(l—GTa:)

e Note that )
P(’y = 0|.’E, 0) =1 — 1 __ exp(—0 z)

1+exp(—0Tz) ~ 1+4exp(—0Tz)

e Prior

p(6) o exp(~All4]13)



MAP

e |ogistic regression model

p(y — 1|£U, 9) = 1+exp(1—9Ta:)

e Note that )
P(’y = O|a:, 9) =1 — 1 __ exp(—0 z)

l4+exp(—0Tz)  14exp(—0Tx)
e Prior

p(6) o< exp(=Al|0]|3)

max log p(6]{z",y'}iZ,) = log L(6) + log p(6)

= Z(yi —1)67x" —log(1 + exp(—07x")) — X1/



Binary Classification Algorithms

Training Data . Predictor
i ivm > Learning Algorithm )
{‘,‘U 7y }'i:]_ f . X _) Y
Binary Classification Y € {0,1}

General ML Algorithm Pipeline

1. Build probabilistic models
2. Derive loss function (by MLE or MAP)
3. Select optimizer



Select Optimizer
max log L(#) = Z(yi —1)8Tx! —log(1 + exp(—6Tx"))

e Necessary Condition

e (Stochastic) Gradient Descent



Gradient Calculation of MLE

max log L(6) = Z(yi —1)08Tx' —log(1 + exp(—6Tx"))

Olog L(6) exp(—0" z*)z?

80 Z(y — D'+ 1 +exp(—0Tz?)

.

1



Gradient Calculation of MAP

max log L(6) = Z(yi —1)67x" —log(1 + exp(—67x")) —)||0||2

dlog L(9) . . exp(—0"x")x?
o0 Z(y — L)z + 1+exp(—0Tzi) 20

(]




Necessary Condition?

Olog L(0) ; . exp(—0'z")z"
o0 Z(y - Dz + 1+ exp(—0Tzi) 0

7



Necessary Condition?

_ T i
0log L(0) =Z(yi—1)xi+ exp(—0 x):c

00

Nonlinear Equation!
Does NOT admit a closed-form solution



(Stochastic) Gradient Descent

e |Initialize parameter §°

t+1 ¢ i 1\ exp(—0 'z*)z* { J
" <6 —I—nzz:(y 1)z + 1 + exp(—072) —2)0\0



Binary Classification Algorithms

Training Data P Predictor
7 N t
{m717y7'}£7;1 earning gorithm f : X % Y
Binary Classification Y € {0,1}

Logistic Regression Pipeline

1. Build probabilistic models: Bernoulli Distribution
2. Derive loss function: MLE and MAP
3. Select optimizer: (Stochastic) Gradient Descent



Q&A



