Lectures
| Date | Topic | Due | ||
|---|---|---|---|---|
| Module 1: Background | ||||
| 01/06 | Lecture #1
        (Bo Dai): Course Overview [ slides | assignment(pdf) solution ] | 
 | ||
| 01/08 | Lecture #2
        (Bo Dai): Linear Algebra [ slides ] | 
 | ||
| 01/13 | Lecture #3
        (Bo Dai): Probabilistic and Statistics [ slides notes reading ] | |||
| 01/15 | Lecture #4
        (Bo Dai): Optimization [ slides | assignment(pdf) | assignment(tex) | solution ] | 
 | ||
| 01/20 | No Class (Martin Luther King Day) | |||
| 01/22 | Lecture #5
        (Haotian Sun & Tianyi Chen): Python / Numpy Review Session (TA session) [ code & data | recording ] | |||
| Module 2: Supervised Learning | ||||
| 01/27 | Lecture #6
        (Bo Dai): Linear Regression [ slides ] | |||
| 01/29 | Lecture #7
        (Bo Dai): Logistic Regression [ slides ] | 
 | ||
| 02/03 | Lecture #8
        (Bo Dai): Multiclass Logistic Regression & Naive Bayes Classifier [ slides | assignment(pdf) | assignment(tex) | solution ] | 
 | ||
| 02/05 | Lecture #9
        (Bo Dai): Generative Model vs Discriminative Model [ slides reading ] | |||
| 02/10 | Lecture #10
        (Bo Dai): Neural Networks [ slides ] | 
 | ||
| 02/12 | Lecture #11
        (Bo Dai): Backpropagation [ slides ] | |||
| 02/17 | Lecture #12
        (Bo Dai): CNNs [ slides ] | 
 | ||
| 02/19 | Lecture #13
        (Bo Dai): RNNs [ slides ] | |||
| 02/24 | Lecture #14
        (Zihao Zhao, Binyue Deng, Jonathan Li): PyTorch Review Session (TA session) [ code & data | recording ] | |||
| Module 3: Unsupervised Learning | ||||
| 02/26 | Lecture #15
        (Bo Dai): Density Estimation: Gaussian Mixture Models [ slides ] | |||
| 03/03 | Lecture #16
        (Bo Dai): Clustering: K-means ↔ Gaussian Mixture Models [ slides ] | |||
| 03/05 | Lecture #17
        (Bo Dai): Variational Auto-Encoder [ slides | assignment(pdf) | assignment(tex) | solution | midterm practice ] | 
 | ||
| 03/10 | Lecture #18
        (Bo Dai): Dimension Reduction & Review [ slides ] | |||
| 03/12 | Lecture #19
        (Bo Dai): Midterm Exam | |||
| 03/17 | No Class (Spring Break) | |||
| 03/19 | No Class (Spring Break) | |||
| 03/24 | Lecture #20
        (TA Teams): Midterm Solution Review & Regrade Discussion [ solution ] | 
 | ||
| 03/26 | Lecture #21
        (Bo Dai): Representation Learning [ slides ] | |||
| Module 4: Large Language Models | ||||
| 03/31 | Lecture #22
        (Bo Dai): LLMs: Attention and Transformer [ slides ] | |||
| 04/02 | Lecture #23
        (Bo Dai): LLMs: Instruction Fine-Tuning & RLHF [ slides ] | |||
| Module 5: Projects | ||||
| 04/07 | Lecture #24
        (Bo Dai): Project Presentation | 
 | ||
| 04/09 | Lecture #25
        (Bo Dai): Project Presentation | 
 | ||
| 04/14 | Lecture #26
        (Bo Dai): Project Presentation | 
 | ||
| 04/16 | Lecture #27
        (Bo Dai): Project Presentation | 
 | ||
| 04/21 | No Class; Project Report Due | |||