Date Topic Due
Module 1: Background
01/06 Lecture #1 (Bo Dai):
Course Overview

01/08 Lecture #2 (Bo Dai):
Linear Algebra

01/13 Lecture #3 (Bo Dai):
Probabilistic and Statistics

01/15 Lecture #4 (Bo Dai):
Optimization

01/20 No Class (Martin Luther King Day)
01/22 Lecture #5 (Haotian Sun & Tianyi Chen):
Python / Numpy Review Session (TA session)

Module 2: Supervised Learning
01/27 Lecture #6 (Bo Dai):
Linear Regression

01/29 Lecture #7 (Bo Dai):
Logistic Regression

02/03 Lecture #8 (Bo Dai):
Multiclass Logistic Regression & Naive Bayes Classifier

02/05 Lecture #9 (Bo Dai):
Generative Model vs Discriminative Model

02/10 Lecture #10 (Bo Dai):
Neural Networks

02/12 Lecture #11 (Bo Dai):
Backpropagation

02/17 Lecture #12 (Bo Dai):
CNNs

02/19 Lecture #13 (Bo Dai):
RNNs

02/24 Lecture #14 (Zihao Zhao, Binyue Deng, Jonathan Li):
PyTorch Review Session (TA session)

Module 3: Unsupervised Learning
02/26 Lecture #15 (Bo Dai):
Density Estimation: Gaussian Mixture Models

03/03 Lecture #16 (Bo Dai):
Clustering: K-means ↔ Gaussian Mixture Models

03/05 Lecture #17 (Bo Dai):
Variational Auto-Encoder

03/10 Lecture #18 (Bo Dai):
Dimension Reduction & Review

03/12 Lecture #19 (Bo Dai):
Midterm Exam

03/17 No Class (Spring Break)
03/19 No Class (Spring Break)
03/24 Lecture #20 (TA Teams):
Midterm Solution Review & Regrade Discussion

03/26 Lecture #21 (Bo Dai):
Representation Learning

Module 4: Large Language Models
03/31 Lecture #22 (Bo Dai):
LLMs: Attention and Transformer

04/02 Lecture #23 (Bo Dai):
LLMs: Instruction Fine-Tuning & RLHF

Module 5: Projects
04/07 Lecture #24 (Bo Dai):
Project Presentation

04/09 Lecture #25 (Bo Dai):
Project Presentation

04/14 Lecture #26 (Bo Dai):
Project Presentation

04/16 Lecture #27 (Bo Dai):
Project Presentation

04/21 No Class; Project Report Due